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1 Introduction

In this paper, I extend an analysis of inflectional paradigms in Rosen (2019) that derived surface forms
of complex inflectional paradigms through blended gradient input forms. The previous analysis was able
to predict surface forms in the complex system of Chiquihuitlin Mazatec (Jamieson, 1982; Ackerman &
Malouf, 2013), in which exponents could vary among as many as eighteen descriptive inflectional classes that
occurred in three cross-cutting dimensions, where there was a potential for a power set of 5775 inflectional
class combinations. It was also shown, however, that the model predicted certain paradigm configurations to
be impossible, namely, that if exponent x occurs for paradigm cell A and exponent y occurs for paradigm cell
B, both for the same lexeme, then it should never occur that the two exponents are switched in those positions
for a different lexeme. The following tables, taken from Rosen (2019) illustrate these predictions, with an
example from the relatively simple paradigm for Russian noun inflection.

Real Impossible
Class 3 | Class 4 Class 3 | Class 4
Gen. Sg. | i1 1 M e
Dat. Sg. | e i [e] i

Table 1: Crossing diagonals

We do in fact find languages with inflectional paradigms that exhibit this kind of pattern, two examples being
Ngiti (Finkel & Stump, 2007) and Kwerba (Malouf, 2013), as shown below in Tables 2 and 3 .

I show that the exponents in these paradigms can be derived by extending the analysis in Rosen (2019) to
include phonological constraints that encode relations between known forms of a paradigm and forms that a
speaker wishes to predict. In the word-based morphological literature, the concept of ‘principal parts’ (Finkel
& Stump, 2007:inter alia) is widely implemented as a way of encoding these relations, where a principal
part is a form that is likely to be known and from which other related forms can be predicted, based on the
form of the principal part. Whereas a conventional way of predicting a paradigm form x from a principal
part p is through rules of the form “if p = A then x = B”, here, the approach is through the concept of
syncretism: the occurrence of the same exponent for more than one paradigm cell, such as the same exponent
-is for both first and second person singular second conjugation verbs in French. Specifically, the constraint
proposed here rewards an exponent for identity with a principal part form and has its weight relativized
among morphosyntactic feature combinations (henceforth MFCs), that make up the columns of a paradigm.
Intuitively, this varying of the weight of the constraint among paradigm columns captures the fact that we
see, cross-linguistically, tendencies for certain pairs of MFCs to be more mutually syncretic than others — for
example, genitive singular is syncretic with with nominative plural in some declensions of Latin but in almost
no cases is it syncretic with accusative singular. By doing this, we are viewing inflectional paradigms as a
kind of dynamic system, where, instead of purely deriving an inflectional form by assembling together a set
of input components that are subjected to a set of rules or constraints, the shapes of different forms across a
paradigm also depend on their relationships to each other. This latter view of inflectional systems is argued
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MEC# in Malouf | 7 1 0 12 13 10 14 11 3 2 5 6 4 15 8 9
vla a//u |L L L L L L L L L L L H L L L L afa-ta ‘to cry out’
vlb o L L L L L L L L H H L H L H L L obhi-ta ‘to cultivate’
Vatr | a//lU | M M M L L L L M M M M H L M M L ada-ta ‘to cross’
v2aitr | &//lU | M M M L L L L M M M M H L M M M upo-ta ‘to climb’
v2btr | O M M M L L L L L M ML H L M M L ado-ta ‘to guard’
v2b.itr | O M M M L L L L L M ML H L M M M adzi-ta ‘to cry’
v3.tr /U | M LM M M M M M M M M M H L M LM M adho-ta ‘to pour’
viir | a//U M LM M M M M M L L L L H L L M M adho-ta ‘to sleep’
va.tr /U ' H LM LM IM LM LM IM H H H H H L H LM M andi-td ‘to write’
vdir |&//U |H LM LM LM LM LM IM H H H H H L H LM LM | akpé-td ‘to whistle’
The archisegment I is realized as [i] or [i]; U, as [u] or [u]; and O, as [o] or [0].

Table 2: “The tone of the root vowel in Ngiti conjugation (Kutsch Lojenga 1994:217ff)” from Finkel & Stump (2007)

ClL | l.aug | 1.dim | 1.du | 1.pl | 2.aug | 2.dim | 2.du | 2.pl | 3.aug | 3.dim | 3.du | 3.pl

1 a ac ec a a ac ac a E ac | naN |
2 a naN aN eN |a naN aN aN | a naN aN naN

3 a naN aN e a naN aN a a | naN | aN E

4 a naN aN era | a naN aN ara | a naN aN ara

Table 3: Kwerba paradigm (from Malouf (2013))

for extensively by Ackerman et al. (2009b,a); Sims & Parker (2016); Ackerman & Malouf (2016); Blevins
(2016, 2006:inter alia).

2 Deriving exponents through blended gradient inputs

In Rosen (2019), inflectional stems and exponents are derived in the framework of Gradient Symbolic
Computation (Smolensky & Goldrick, 2016). Smolensky et al. (2020) describe this framework as follows:

“...anovel category of computation — a cognitive architecture that unifies symbolic and neural-
network computation. Representations are symbol structures whose components are associated
with continuously-varying activation values. Knowledge is represented through weighted
constraints, specified by a Harmonic Grammar. This formalism is part of a larger research
program in which computation derives outputs from gradient representations in phonology,
syntax and semantics (Cho et al., 2017; Faust & Smolensky, 2017; Faust, 2017; Goldrick et al.,
2016; Hsu, 2018; Miiller, 2017; Rosen, 2016, 2018b,a, 2019; Smolensky et al., 2014; Smolensky
& Goldrick, 2016; van Hell et al., 2016; Zimmermann, 2017b,a, forthcoming).”

This framework allows blended gradient inputs. In Rosen (2019), what we think of as an exponent can
occur in two input locations: (a) as a ‘ base input’ on a lexical base and (b) as a separate ‘inflectional input’
that represents some combination of morphosyntactic features. For example in the Ngiti paradigm shown
above that will be analysed in §3, a lexeme in conjugation vla contains an input blend of tones L and H
(activated at 0.75 and 0.2 respectively as explained in §3) and the infinitive MFC has an input blend of tones
H and M (activated at 0.1 and 0.3.)
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Lexical base | Inflectional affix

root

=
Input: afa {L,H} | INFIN.={L, H, LM} + /ta/
Output: af & ta

~
root exponent affixal exponent

Table 4: Infinitive of lexeme, descriptive class vla

In that account, the choice of an exponent that surfaces results from the possibility for two instances of
the same phonological object such as a tonal or segmental feature to coalesce in the output. When there is a
blend of input elements with gradient activations in both the lexical base and inflectional affix, as shown in
Table 4, the element with the highest aggregate activation will surface in the output. In the GSC framework,
an optimal output candidate is chosen based on the aggregate Harmony of that candidate with respect to
weighted constraints. Relevant here are MAX and DEP Faithfulness constraints, where MAX contributes
positive Harmony equal to the amount of the input activation of a feature that surfaces and DEP penalizes
with negative Harmony equal to the amount of the deficit between full activation of 1.0 and the amount of
input activation. If only MAX and DEP constraints are relevant, then the exponent with the highest aggregate
activation will be the one that surfaces, as long as the result Harmony is above zero.

In the case of the predicted impossible pattern show above in table 1, the activation inequalities necessary
to derive this pattern lead to a contradiction. The inequalities are shown in Appendix C.

It should be noted that this approach to inflectional morphology has in common with word-based
approaches that it does not strictly separate stems from affixes. The input tones in table 4 occur on both
what we refer to as the lexical base and on the inflectional affix. The tonal exponents shown in the Ngiti
paradigm are part of the root but are listed separately by Finkel & Stump (2007:43), who write:

“Close inspection of these examples reveals that there’s not really any morphological variation
from one conjugation to the next in Ngiti except with respect to the tone of the root-final vowel.
(The members of each conjugation are also generally restricted with respect to the quality of their
stem-initial vowel.) We can therefore abstract from the rest of the morphology of these forms as
in Table 9 [ = Table 2 here|, whose horizontal axis lists the different morphosyntactic property
sets that vary in their realization from one Ngiti conjugation to the next and whose vertical axis
lists the conjugations themselves.”

Given the influence of word-based morphology on the present approach, the constraint proposed here,
although inspired by Output-Output Faithfulness (Benua, 1997), has some differences from the familiar
version of O-O Faithfulness. First, the principal parts its refers to are not exactly the same as a base form,
in that there can be more than one principal part for a paradigm' and known forms can vary from lexeme to
lexeme (although that route is not followed here, but see footnote 4.) Secondly, because the present approach
does not draw a clear line between stems and affixes, it does not predict that a constraint that measures identity
to a principal part should be measured any differently for what some might regard as a stem versus and affix.?

! Finkel & Stump (2007) propose various combinations of three principal parts for Ngiti

2 An anonymous reviewer asks the question of whether the constraint would apply differently to stems than to affixes.
They also comment: “Typically, Base-Faithfulness is given the same ranking for all inflected forms (at least, within some
“sub-paradigm”- e.g., for present tense forms, within the plural, etc.), and is not relativized to individual cells (Base-
Faith/1pl, Base-Faith/2pl, Base-Faith/3pl, etc. ).” Given this comment, it is important to distinguish the approach here
from Base-Faithfulness. Here, we are viewing principal parts as forms for which any form could be chosen for the sake of
prediction and not as a single distinguished form as in the usual concept of a base form. Rather than measuring whether
a form corresponds to some distinguished base, we are viewing a complex array of relations between different forms of a
paradigm, where syncretism between forms will occur variably.
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3 Gradiently weighted syncretism to a principal part

In spite of the ‘crossing diagonals’ pattern that is evident in the paradigms of Ngiti and Kwerba as shown
above, the exponent for a given lexeme and MFC can be predicted from input forms if the choice of exponent
is determined by the additive effect of two factors: (a) the aggregate activation of inputs as described above
as they are measured by MAX and DEP constraints and (b) Harmonic rewards for syncretism of a candidate
exponent to a form that is a principal part. In the case of the Ngiti paradigm, we find through a global beam
search of MFCs as possible principal parts, that all exponents can be derived correctly if the two principal
parts are nominalized-2 and the perfect recent past forms. The syncretism constraint operates over each of
the principal part forms. For each of the two principal parts, for each MFC, there is a Harmonic reward? if an
exponent candidate for that MFC matches the exponent that occurs for the MFC of the principal part.* The
reward depends on the weight of the syncretism constraint, which varies according to the MFC in question.
The reason for considering constraint weights that vary according to the MFC for which a candidate is being
considered is that some MFCs will exhibit syncretism to a principal part MFC while others will not. A
learning algorithm, discussed below, found the following weights for syncretism relative to one of the two
principal parts for each of the sixteen MFCs in the Ngiti paradigm.

Table 5 shows the learned weights for the constraint relative to each MFC. Those with zero values are
left blank. The actual principal parts are bolded.
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Table 5: Learned weights of syncretism to a principal part for each MFC

The tableau in (1) on page 5 shows an example of how these input forms and constraints work for
deriving the correct exponent tone for the imperative past MFC for lexeme udho ‘pour’ given by Finkel &
Stump (2007) in class v3.tr. as shown above in Table 2. For this lexeme class, both principal parts surface
with a M tone, so any candidate with a M tone will reap an extra reward of 0.05 for each of the two principal
parts, since 0.05 is the learned weight of the Syncretism constraint for that MFC. The learning algorithm
worked successfully for many different weights of MAX and DEP, but a low weight of DEP was chosen so
that some tonal feature would always surface. It is assumed here that there is a low weight for a UNIFORMITY
constraint that would penalize outputs with more than one input corespondent and such a constraint is omitted
from the tableaux. For simplicity of exposition, following the comment by Finkel & Stump (2007) on page 3
we only show tonal features as candidates.

The following are the constraints in the analysis:

e DEP: penalizes material with no input correspondent. Harmony penalty is the activation deficit between
an output and its corresponding input times the weight of the constraint.

e MAX: rewards a candidate where underlying elements have output correspondents. Reward is based
on the amount of each underlying that surfaces times the weight of the constraint.

3 An anonymous reviewer asks why this constraint is formulated positively rather than negatively and observes correctly
that it would not make a qualitative difference if it were measured negatively. Because syncretism is a departure from
canonicity, as described by Corbett (2007), it makes more sense to reward it when it helps with predicting forms rather
than to penalize forms that are canonical by being distinct from a principal part.

4 The model assumes that a speaker will know the correct form for each of the principal parts but needs to predict the
other forms. That a speaker would know the correct form of some principal part for every lexeme may be an idealization.
(See for example, Malouf (2018).) A further step with this analysis would be to allow the possibility of different known
forms for different lexemes.
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e SYNCRETISM-TO-PRINCIPAL-PART: rewards a candidate whose output correspondent matches a
principal part to the amount of the constraint weight.

ey
{0.1-L,0.2-M,0.3-LM} {0.1-L,0.35-H,0.1- M}
/adho/ ‘pour’ + IMP.PST. MAX DEP SYNC. TO PR. PART Harmony
1.0 —0.1 0.05
to perf.rec.pst. to nom.stem.2

(aL 02| —0.08 0.12
(b)H 0.35 | —0.065 0.285
M =1 03| —-0.07 0.05 0.05 0.33
(d) LM 03| —0.07 0.23

In this example, candidate (c) earns extra Harmony twice for matching the M tone in both principal parts,
each of which carries a M tone for this lexeme class. This candidate has a lower aggregate activation from
inputs than candidate (b) but the reward from the Syncretism constraint gives it optimal Harmony.

On the other hand, a reward for syncretism to a principal part does not always result in the identity of an
exponent to a principal part. In class v.2a.tr., both principal parts have a L tone, and the Syncretism weight
for imperfective past continuous is 0.15; nevertheless, that form surfaces with a M tone, because of high input
activation on a M tone for the lexeme, as shown in (2).

2
{0.05-L,0.1-H,0.6- M} {0.3-L,0.15- H,0.05- M}
/ada/ ‘cross’ + IMP.PST.CONT. Max DEP SYNC. TO PR. PART Harmony
1.0 —0.1 0.15
to perf.rec.pst. to nom.stem.2

(aL 0.35 | —0.065 0.15 0.15 0.585
(b)H 0.25 | —0.075 0.175
M =1 0.65 | —0.035 0.615
(d) LM 0.0 -0.1 -0.1

4 Learning input activations and constraint weights

As mentioned above, the weights of MAX and DEP were found not to be crucial for determining the
correct exponent for each cell in the paradigm and were pre-set at wpsq, = 1.0 and wpe, = —0.1. A
error-driven learning algorithm was used to find constraint weights for the SYNCRETISM constraint and input
activations for the tonal features for each lexeme class and each MFC. The algorithm is similar to Pater &
Boersma (2013) but also learns activations as well as constraint weights. The algorithm is modeled after
EDGAR in Smolensky et al. (2020) and applies in the same way to the learning simulation that was carried
out here. (See Smolensky et al. (2020) for precise details.)

5 Kwerba paradigm

The simpler Kwerba paradigm, repeated in Table 6, can be generated with just one principal part, where
any of six out of the twelve MFCs can function as such. If the 3rd.pl. MFC is chosen as the principal part
for Kwerba, the following table shows the weights for Syncretism to that MFC. Finkel & Stump (2007) add
a note that ‘N’ represents a nasal that is homorganic with the following consonant.

ClL | l.aug | 1.dim | 1.du | 1.pl | 2.aug | 2.dim | 2.du | 2.pl | 3.aug | 3.dim | 3.du | 3.pl

1 a a ac ec a a ac ac a E ac | naN |
2 a naN aN eN |a naN aN aN | a naN aN naN

3 a naN aN e a naN aN a a | naN | aN E

4 a naN aN era | a naN aN ara | a naN aN ara

Table 6: Kwerba paradigm (from Malouf (2013))



Rosen Predicting complex inflectional paradigms
l.aug | l.dim | l.du | L.pl | 2.aug | 2.dim | 2.du | 2.pl | 3.aug | 3.dim | 3.du | 3.pl
0.1 0.1 0.2 0.1 0.6

Table 7: Weights for Syncretism to 3rd.pl. for Kwerba

The following tableau shows how the exponent for MFC 2nd.pl. in class 3 benefits from Syncretism to
base form a for 3rd.pl. for that lexeme. The learned input for a lexeme of that class has a blend {0.05 - a,0.2 -
naN,0.15-aN, 0.2 - e} and the MFC 2nd.pl. has a blend {0.5- a,0.25 - ac,0.1-aN,0.05 - ara}. Candidates
(b), (d), (e) and (g) all have a higher aggregate activation as shown by the values in the MAX column, but
candidate (a) wins because of Syncretism to the base form a.

{0.05-a,0.2-naN,0.15-aN,0.2-e} {0.5-a,0.25-ac,0.1-aN,0.05- ara}
lexeme 3 + 2nd.PL. MAX DEP | SYNC | Harmony
1.0 —0.1 0.2
(a)a =1 0.1 —0.09 0.2 0.21
(b) ac 0.25 | —0.075 0.175
3) (c)ec —0.1 —0.1
(d) naN 0.2 —0.08 0.12
(e) aN 0.25 | —0.075 0.175
(f) eN —0.1 —0.1
(g)e 0.2 —0.08 0.12
(h) era —0.1 —0.1
(i) ara 0.05 | —0.095 —0.045

6 Discussion

The present approach to the “cell-filling problem” in inflectional paradigms (Ackerman & Malouf,
2013), occupies a middle ground between rule-based approaches (e.g., Baerman (2012) whose rules may
require exceptions, and neural-network approaches (e.g., Malouf (2018)) which can handle large amounts
of complex data but for which it can be difficult to see exactly where a speaker’s linguistic knowledge is
represented within vast arrays of connection weights and distributed representations of linguistic elements
in a relatively high-dimensional vector space. The Gradient Symbolic Computation framework provides an
interface between symbol structures that are familiar in conventional linguistic theory and a neural basis
of cognition in which gradiently-valued elements play a part. In this account, both words and MFCs that
determine the content of paradigm cells are represented underlyingly by gradient blends of phonological
material and the way they surface also depends on syncretic tendencies across the paradigm for word forms
to identify with principal part forms for the same lexeme. A further research step in this framework would
be to find ways to encode implicational relations between paradigm cells that goes beyond a static set of
principal parts and captures the relations between any pair of cells in a paradigm.
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Appendices

A Learned activations for Ngiti

Class | L H M LM
vla 0.75 | 0.2

vlb 035 |04

v2a.tr. 0.05 | 0.1 0.6

v2a.itr. 0.05 | 0.05 | 0.4
v2b.tr. 02 |0.05| 04
v2b.itr. 02 [005]03

v3.tr. 0.1 02 |03
v3.itr. 0.35 0.15 | 0.1
vé.tr. 0.05] 0.5 | 0.05|0.25
v4.itr. 0.4 0.05
Case | L H M LM
imp.pl. 035102
imp.sg. 0.05 0.15 | 04
imp.dstfut. | 0.1 | 0.35| 0.1
imp.nr.fut. 0.1 |035] 0.1
imp.pst.cnd. | 0.55

imp.pst.cont. | 0.3 | 0.15 | 0.05
imp.pst.hab. 0.6

inf. 0.1 |03
nom.1 0.35 | 0.35
nom.2 0.1 0.15
prf.ind.pst 0.2 0.1 | 0.05
prf.nar.pst. 0.3 | 0.15] 0.05
prf.pres. 0.2 0.1 | 0.05
prf.rec.pst. 0.2 0.1 | 0.05
prf.rem.pst. | 0.2 0.1 | 0.05
subj. 0.1 |0.35] 0.1

B Learned activations for Kwerba

C Inequalities that show a contradiction

Here, ¢ represents the activation of i and € of e
for a given (subscripted) feature value or descriptive

inflectional class.

Impossible
Class 3 | Class 4
Gen. Sg. e
Dat. Sg. | [e] i

Table 8: Crossing diagonals (repeated from Table 1

on page 1)

lg.sg. + i3> €g.59. + €3

€g.s9. + €4 > Lg.sg. + 4

ldat.sg. +t4 > €dat.sg. + €4

€dat.sg. T €3 > ldat.sg. T3
(4)+ (B):tstes>e3+1a
(6)+(7)2L4+63 > €4 + L3
(9) contradicts (8)

Table 9: Contradictory inequalities

Class | | a ac ec naN | aN eN e era | ara
1 0.65]0.65| 045 |04

2 0.1 [02 |0.25

3 0.05 0.2 | 0.15 0.2

4 0.1 |0.15 0.2 | 0.1
Case| | a ac ec naN | aN eN e era | ara
l-aug. | 0.4

1-dim. | 0.2 0.2

1-dual 0.25 0.15

1-pl. 0.35 02 [02]02
2-aug. | 0.4

2-dim. | 0.2 0.2

2-dual 0.25 0.15

2-pl. 0.05 | 0.25 0.1 0.05
3-aug. | 0.4

3-dim. | 0.2 0.2

3-dual 0.25 0.15

3-pl. 0.05 0.3 0.05

“)
S)
(6)
@)
)
9)
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