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Probability in phonological generalizations:
modeling French optional final consonants

BENJAMIN K. BERGEN
U.C. Berkeley and International Computer Science Institute

0. The problem of conflicting phonological generalizations”
The place for statistics is outside, not inside, grammar. (Smith 1997:298)

it is important ... not to mistake complexity for irrelevancy. (Abney 1997:13)

The starting point for this paper is the simple and unoriginal observation that
many phonological generalizations are variable. By variable, I mean that their
application is not predictable from phonological properties of the string, but rather
depends probabilistically on other factors. In speech perception, phonological
generalizations are particularly variable because of dialectal and inter-speaker
differences; perception is the perspective taken in this paper.

Four types of variable phonological generalizations are identified in section 1.
I outline several existing partial solutions to these types in section 2, from the
generative phonology and variable rules traditions. These solutions cannot
account for all types of variation, though, and I argue in section 3 that one type
they have particular problems with, interacting extraphonological variation, is
qualitatively indistinguishable from the others.

Section 4 proposes a solution which takes advantage of a knowledge
representation model recently developed in Artificial Intelligence known as Belief
Networks (BNs—Jensen 1996). Section 5 demonstrates that BNs not only meet
descriptive adequacy for interacting extraphonological variation but also that they
surpass variable and generative models in learnability and neural plausibility.

1. The variable generalization problem
1.1  Types of variability
Despite what one might gather from a survey of introductory phonology
textbooks, phonological generalizations are not all simple and invariant. And yet
it is possible to detect traces of variation in the generative phonological literature,
where four types of variation phenomena can be distinguished.

Type 1. Free (Type 1) variation is occasionally mentioned, but infrequently
accorded any import. At least, this was the case before Optimality Theory

"Many thanks to Mark Paskin, Nancy Chang, Emily Bender, and Michael Israel for their insightful
comments. Any errors or oversights are due exclusively to me.
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(OT-Prince & Smolensky 1993) took the phonological stage. To the extent that
any variation is truly free of social correles, it can be dealt with much more
parsimoniously in OT than in previous generative models, and very interesting
quantitative work has been done in this direction (e.g. Antilla 1997).

Type 2. Predictable phonological (Type 2) variation is much more commonly
discussed in the generative literature because it is thought to be rule-governed.
Type 2 variation can be defined as the variable application of a phonological
generalization when certain other phonological generalizations are present. A
central example of this type of variation is phonological opacity (Kiparsky 1973).

Type 3. Not all non-phonological variation (perhaps none of it) is truly free.
Rather, certain variable phonological generalizations, like the deletion of a word-
final f or d in English, correlate with social factors. Research on Variable Rules
(VRs), which started in the late 1960s (Labov 1966) and has continued into the
present (c.f. Fasold 1996 for an overview) stems from this very observation.

Sudents of sociolinguistic variability have closely inspected independent
(Type 3) variable generalizations. An example of this class is the case of French
optional final consonants (Verluyten & Hendrickx 1987, Stammerjohann 1976).
These are a class of about 50 words whose final consonants can be pronounced or
elided, depending on social and phonological environment; they include aoiit
‘August’, cing ‘five’, fait ‘fact’, but ‘goal’, and ananas ‘pineapple’. The most
significant conditioning factors for the rule are properties of the following
segment and the speaker’s age, gender, nationality and social class (1).

(1) Sociolinguistic variables & French optional Cs (Verluyten & Hendrickx 1987)

Age Nationality Gender Social Class
Young Old | French | Belg. F | M Low High
| % produced 65 52 72 47 61 | 57 65 52

None of these conditioning factors determines whether the final consonants
will appear in any strong sense. Instead, particular values for each variable
increase the statistical likelihood that the consonant will occur. For example, the
categorization of the segment following the optional final consonant can affect
these values: optional final consonants are missing before consonants with a
64.8% probability, and before vowels at 48.8%. Moreover, these contraints do not
interact; the contribution of each can be assessed independent of the values of any
of the others. This distinguishes Type 3 (independent) variability from Type 4
(interacting) variability.

Type 4. Interacting (Type 4) variation is nicely exemplified by the problem of
word length and grammatical class in French liaison (Tranel 1981). French liaison
consonants are a class of word-final consonants that can be pronounced or not,
depending again on a set of factors. These factors belong to various domains:
surface phonological (e.g. properties of other realized segments), syntactic (e.g.
constituency and grammatical class), morphological (e.g. expressive/semantic
status), social and sociolinguistic (e.g. register, style, speech rate, and dialect), and
others. Again, they contribute non-deterministically to the string’s realization.

Crucially, two of these factors interact: word length and grammatical class. In
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other words, shorter liaison words make the expression of a liaison consonant
more likely, but only if those words are prepositions or modifying adjectives, and
not nouns or non-modifying adjectives (de Jong 1989). Thus we say that these
two effects are not independent, but rather interacting. The theoretical
ramifications are addressed in section 3, but in sum, existing generative models
and variable rule analysis cannot deal with generalizations of this type.

1.2.  Evidence for variability

One explanation for the poverty of discussion of variation in the mainstream
phonological literature is that it calls for a particular methodology that is not the
norm. Variation benefits from corpus studies in a way that invariance does not for
three main reasons. First, since correlates of a variable phonological
generalization can be of various types, the set of possible contributing factors can
become too large to be elicited or introspected in a reasonable time. Second, the
very fact that the generalizations are not deterministic means that a large number
of tokens need to be studied for results to be statistically significant. Finally, some
variability is closely tied to extralinguistic attributes of the speaker, in which case
a single speaker is not a representative source of evidence.

A second explanation is the belief in a fundamental schism among the four
types of variability discussed above. Where exactly to draw that line is unclear,
but opacity (Type 2) has been widely addressed by mainstream phonological
models, while interacting extraphonological variation (Type 4) has not. In
contrast, two arguments can be made for treating all four variation types
uniformly.

First, the kind of evidence that a language-perceiver or analyst can collect for
all types is qualitatively similar. All cases are characterized by measurably
different phonological forms with identical or related denotations, where
phonological generalizations about the distribution of those forms cannot be made
on the basis of their surface co-occurrents. The types differ in whether the
probabilities of the generalizations correlate with factors outside the string, and
whether contributing factors interact. Opacity, e.g., can be seen as interaction
between morphological and phonological generalizations.

The other argument for treating variability in a unified manner is that no clean
line can be drawn between a purely phonological or purely grammatical
variability on the one hand and extraphonological or extragrammatical variability
on the other. Rather, different contributing factors from different modes interact.
For example, properties of the following segment interact with lexically-specified
final-consonant probabilities in French liaison (Bergen ms).

A final explanation for the absence of invariability in phonological studies is
the a priori belief that phonological systems are inherently deterministic. The next
section explores the ramifications and limitations of this notion, as well as the
Variable Rule model, which is a step in the direction of representing uncertainty.

2. Dealing with variable generalization

Most phonological models are characterized by an underlying assumption, the
invariance hypothesis, which holds that the elements of phonological
generalizations are invariant. In particular, invariance is presupposed for the
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object of a generalization, its environment, and its content. As Labov (1997)
notes, the principle aim of linguists seems to be the reconstruction of theoretical
invariance on the basis of variable data. Historically and methodologically, it is
precisely the failure of this procedure that leads to the study of variability. But
how is an invariant model to deal with statistically-variable data?

The study of Type I (free) variable generalizations is still in its infancy in
invariant generative phonology. While rule-ordering approaches have essentially
nothing to say about free variation, several different means have recently been
proposed for making precise distribution predictions using OT. These include the
invention of probabilistic ranking (Boersma & Hayes ms), relative unranking
(Anttila 1997), and floating of constraints (Nagy & Reynolds 1997).

Type 2 (predictable) phonological generalizations do not hold in a surface-true
manner, but due to regular historical developments—and sometimes also to
synchronic factors—they do display certain regularities. These regularities are
integrated into invariant models where rules can be intrisically ordered (Kiparsky
1973), where constraints “gang up” (Kirchner 1996) or where forms can be
selected by the analyst to win on grounds of “sympathy” (McCarthy 1997).

However, Type 3 (extraphonological independent) variability seems to be best
addressed by Variable Rules (VRs). VR analysis (Labov 1966) treats socially-
correlated variation with the very simple but theoretically significant addition of
quantitative weightings to SPE-style generative rules. The most discussed
example of this type of analysis treats the problem of English word-final #/d
deletion (e.g. Guy 1991). The application of #/d deletion, although apparently
active to some extent in all dialects of English, has been found to correlate with
certain social attributes of the speaker, such as age, social class, and gender.
Linguistic environments favoring the application of this rule are two preceding
consonants, an unstressed final syllable, and a following sonorous segment, i.a.

VRs take the following form, where angled brackets designate variable
contexts, those that affect the application of the rule probabilistically given a
socially-determined input probability, and square brackets are invariant (2). VRs
like this one are derived from the statistical evaluation of the probabilistic
contribution of a set of independent factors to the application of the rule.

() t,d = <@> / <-stress> <+cons> [+cons] _ <+son>

Neither generative nor variable models is able to address Type 4 (interacting)
variability. The next section describes failings of each model in accounting for
variability.

3. Problems with existing models

The best-known critiques of derivational models are psychological and neural
plausibility arguments (c.f. the papers in Goldsmith 1993 or Lima et al 1994). One
of the most convincing is a processing limit argument. Adapting Price’s (1996)
demonstration, let us imagine a truly serial perceptual (or production) system, in
which each of six modules makes its calculations, then passes its results to the
subsequent module. (For argument’s sake, these might be phonetic, phonological,
morphological, syntactic, semantic, and pragmatic levels.) Given that no module
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can ever be 100% certain of its assessments (due to variability ranging from the
phonetic to the semantic realms), an ideal system might display 95% accuracy per
module. But giving these nearly perfect calculations, we could only be confident
about the product of our elaborate derivation to an accuracy of only 73%. In vivo
production and recognition systems work worlds better than this.

Strong seriality therefore calls into question the plausibility of VRs and
certain generative models, independent of problems they display with variability.

3.1. Invariant models

The invariance itself of invariant phonological models poses problems when it
comes to learning. How can an invariant representation be constructed on the
basis of variable input? The simplest, and perhaps the most theoretically-charged,
answer is to posit innate and/or universal pre-phonological generalizations (read:
parameters or constraints). Hoping not to get sidetracked by the innateness
question, I would simply like to point out that “learning systems” based on
innateness are not accounts of the learning of invariant structures from variable
input, but rather accounts of the reorganization of invariant generalizations on the
basis of variable input (e.g. Tesar & Smolensky 1996, Boersma & Hayes ms).
Moreover, innateness is not the only solution; there exist psychologically-
plausible accounts of concept formation that depend on exclusively variable
inputs, such as prototype (Rosch 1978) and exemplar models (Johnson 1997). To
the extent that learning of variable concepts is possible, arguments for innateness
on the basis of the poverty of the stimulus are unjustified, as thus so are models
based upon the reorganization of invariant, innate constraints.

Moreover, the extension of invariant models to account for socially-correlated
variation (Types 3 and 4) may violate their basic tenets. The circular reasoning
might go something like this: Grammar is different from usage-based linguistic
knowledge in part in that it is invariant and algebraic; it is a separate module that
does not interact with extralinguistic knowledge; social factors cannot enter into a
model of grammar because they introduce uncertainty and language-external
constraints (“There is no motivation for tying variation to rules of grammar”
(Fasold 1996:91)).

3.2.  Variable Rules (VRs)

Certain long-standing critiques of VRs have enjoyed wide success, and VRs have
become somewhat hard to come by, as summed up nicely by the title of Fasold’s
(1996) paper, “The quiet demise of variable rules”. Attacks have focused on both
empirical and theoretical commitments. First, I cite some empirical claims about
language for which VRs have been criticized :

e They are unable to account for the statistically interacting properties of
social contexts and deny this property for linguistic context. This aspect is
problematic since social and linguistic factors display interacting properties
(de Jong 1989).

¢ They claim different languages or varieties stand on a continuum. On the
contrary, language users often recognize clear-cut boundaries between speech
communities.
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o They presuppose variables in VRs to have no effect on meaning. The
semantics of the utterance must not be affected by a choice of alternate.

e They disallow conscious manipulation of linguistic variable, as with
speech style (Dittmar 1996). Social meaning is restricted to phonological and
morphological variation. This entails that speakers cannot make linguistic
choices to convey social meaning.

Variable rules have also been attacked for theoretical properties:

e Their phonological representations inherit SPE’s flat structure.
Hierarchical organization of phonological structures was one of the most
significant advances of recent phonological theory (Goldsmith 1990). VRs
have not been extended to hierarchical phonology, probably because of the
enormous structural and computational problems of such a move.

o Their quantitative values are essentially arbitrary, i.e. non-explanatory,
except that they do predict relative ranking of environments (but see Guy’s
(1991) claim to contrary, which appears to suggest ratios on the basis of a
lexical phonology approach).'

e They don’t actually integrate probabilities with a grammar. VRs provide
interface points, but the probabilistic mechanisms that would have to be
posited to deal with variation are absent.

e They can cover up categorical behavior by individuals or subgroups.
Bickerton (1971) observed that statistical generalization can lead to the belief
that individual behavior is identical to group behavior.

Both VR and invariant models are problematic in general, and are unable deal
with uncertainty of various types, in particular, Type 4 variability.

4. Fighting uncertainty with uncertainty

I propose an alternative solution to the variable surface generalization problem
which does not make use of problematic ranking or ordering and additionally
allows the complex combination of multiple modes of probabilistically interacting
information. The proposed solution posits that phonological knowledge itself is
not invariant but rather probabilistic. Type I (free) variation is dealt with by
assigning a prior probability to the variable phonological generalization. Type 2
(predictable) variation involves the near-categorical, but nonetheless probabilistic,
contribution of phonological and morphological factors. Type 3 (independent)
variation involves the probabilistic assessment of external (and phonological)
factors. Type 4 (interacting) variation is treated with interacting probabilistic
external and phonological factors. A single, probabilistic mechanism can serve to
unify these types of knowledge.

! The same critique could be leveled at generative grammar in general. Differences in language-
specific constraint rankings are entirely non-explanatory, even if they can be harnessed to give
specific quantitative predictions about realization (as in Anttila 1997).
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4.1.  Support for probability in cognition

The proposal that phonological knowledge is fundamentally probabilistic finds
independent support in both general cognitive processing properties and specific
aspects of “creative” language use.

Schematic conceptual knowledge (that is, abstraction over specific perceptual
instances) is probabilistic rather than invariant. Several lines of fruitful research
dedicated to understanding conceptual representations have formulated this
observation in differing terms: fuzziness, prototype effects, and gradedness in
categories (Lakoff 1987), but the substance of the models is similar. We can thus
expect phonological abstractions to be probabilistic as well.

Second, “creative” uses of language (the production or recognition of novel
forms) and historical developments (Bybee and Slobin 1982) display probabilities
in the same way as “uncreative” language does. By the same token, linguistic
judgements (a sort of “creative” linguistic endeavor) are similarly subject to
probabilistic assessments (Hayes ms, Bender 2000). Along with the probabilistic
nature of corpus data, this suggests that empirical evidence for creative language
use is in essence probabilistic.

A model which aims to extract multi-leveled probabilistic information from
the phonological signal, and also to adapt its production according to multi-modal
factors impacting phonology, must encode this knowledge. Until recently,
however, the computational demands of this problem were too great. Belief
Networks are shown in the next section to be appropriate for modeling
phonological generalizations, specifically for the set of interactions responsible
for the optional final consonant phenomena described in section 1.1 above.

4.2.  Belief Networks (BNs)

Belief Networks (BNs) are a concise and powerful computational representation
of uncertain propositional knowledge (Jensen 1996). Specifically, BNs consist of
(1) a set of nodes representing propositions or variables, each of which has 2)a
set of possible values, (3) links between causally-related propositions (where
causation can be interpreted either ontologically or epistemically), and (4)
conditional distributions, specifying the probability of each value of every node
given a value assignment to its parents. Using a probability theory, inferences can
be made about the probability of the value of any node given any (set of)
observed values for any other nodes. Another appealing property of BNs for many
large-scale problems like the present one is that given certain independence
assumptions, the set of conditional distributions is much more succinct than a
complete joint distribution for all the variables of the system.

In a simple example, five propositions, each with multiple possible values, are
represented by nodes (circles) in (3). The node representing the proposition
Rain(t,f) stands in a causal relation to Lawn_Wet(t,f), as indicated by the link
connecting the two. Causality is indicated by the unidirectionality of the link;
Rain(t) causes Wet_Lawn(t), and not the reverse. Each node is associated with a
conditional distribution table. Orphan nodes, those with no parents like Rain(t,f)
and Sprinkler(t,f), have simple prior distributions that express solely the
probability of each of their values. In the example in (3), there is a 0.3 likelihood
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that Rain will take the value frue, and a 0.5 chance that Sprinkler will be true. The
sum probability for all the values of a proposition is always 1.

The relationship between two causally-linked propositions is encoded in the
conditional distribution of the downstream node. Lawn_Wet, for example, has
two parents, and since each of them has two p0551ble values, the probability of
each of its two Values is specified for the four (2%) possible causal states, thus
giving eight (2°) possible configurations. If we know Rain to be frue, and
Sprinkler to be false, then the probability of Lawn_Wet(t) in this example is 0.95,
while if Rain is false and Sprinkler is frue, then Lawn_Wet(f) has a 0.1
probability.

(3) Simple Belief Network
Rain(t,f) Sprinkler(t,f)
t] 0.3 t] 0.5
f]1 0.7 f]10.5
Rain(t) Rain(f) \
Sprinkler] t f t t O Lawn_Wet(t,f)
Lawn [t]10.9910.951 0.9 J0.15 -

| Wet [£]0.0170.05] 0.1 J0.85

Paper Wet(t.f) Paw_Prints(t,f)

LawnWet] t T LawnWet| t f
Paper [t ]0.75] 0.1 Paw t]037]0.2
[ Wet [F]0.25]0.9 Prints |f] 0.7 ] 0.8

But the real interest of BNs lies not just in their representational power but
more importantly in their inferential power. First, given a network and full set of
conditional distribution tables as in (3), beliefs about the various propositions are
propagated to produce the unconditional probability of each proposition, the prior
probabilities of its values given the network. Alternatively, inference can be made
given observations about the values of propositions. The second sort of inference,
diagnostic inference, involves the propagation of evidence from an observed
effect (a child) to an unobserved cause (a parent). For example, given that we
observe Paw_Prints to be frue, we might ask what the probability is of Rain or
Lawn_Wet being frue. Third, causal inference involves the prediction of effects
given that values for causes are observed. In the case of (3), we might observe
Sprinkler to be false and then let the inference algorithm determine the probability
of Paper_Wet also being false. Finally, hybrid types of inference are possible: for
example, what is the probability of Lawn_Wet being #rue if Rain and Paw_Prints
are both true?

4.3. A Belief Net model for optional consonants
Assuming for the purpose of exposition that the only factors contributing to the
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occurrence of a final consonant in French are the ones enumerated in (1) plus the
nature of the first segment of the following word, the BN in (4) can be
constructed. Each node represents a variable, and Gender, Class, Age, Nationality,
and Following_V are assumed to have only two possible values each to keep the
network simple, although continuous values are also allowed in BN, By the same
token, the lexicon is compressed into only three words, each of which represents a
word class; ananas ‘pineapple’ has a frequently omitted final consonant, the final
consonant of cing ‘five’ is rarely deleted, and the final consonant of coq ‘rooster’
is always pronounced. Since there are no interactions between individual social
factors and any other factors, their influence is summarized under Soc_Factors,
which is what is known as a hidden node. That is, evidence for the values of this
node cannot be directly extracted from the environment itself, but rather must be
inferred.

“ Belief Network for optional consonants
Gender(m,f) Class(l,h) Age(y,0) Nationality(f,b)

Word(ananas,
cing, coq)
O\L@:_Factors(t-) Following_V(t,f)

Soc_Factors(+,-)

FinalC(t,f)

In the network in 4, given the probabilities of co-occurrence of variables taken
from Verluyten and Hendrickx (1987), we can perform inference tests. First, let
us consider the unconditional (prior) probabilities for each of the nodes, in (5a).
Word(coq) is significantly more likely than its lexical competitors, since the non-
optional class it stands for is the most common in the language. Final C(t) is
significantly positive as a consequence of this; all other nodes are at chance. Next,
Wwe can assess probabilities given observed values for a subset of the nodes.
Given, for example, Word(ananas), that is, given that the word considered is
ananas, the probabilities of all visible nodes are 0.5 for each state, except for
FinalC, whose probability of true is 0.67 (5b — note that observed values are
designated by bold italic). For Word(ananas) and Following_V(f), the only
difference is that, as expected, the probability of FinalC(t) rises to 0.73 (5¢). To
test the significance of FollV, (5d) shows the results of Word(ananas) and
FollV(t). The result of setting all the social factors plus Following_V to the values
most conducive to suppressing a final consonant is shown in (5¢), while the
reverse is shown in (5f).
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5 Probabilities of nodes in (4) for Word(ananas) and Following V(t)
Word FinalC FollV Age Nation | Gender | S.Class
Ananas | Cing } Coq T FlITVFJJY|V|O|FI1Bl|F|IMIL]|H
a .05 .05 .9 961 .04} .51 5150515151 501.51.51.5
b 1 0 0 671 .231.51 5150 .51.5)1.51.51.51.51.5
c 1 0 0 731 .271 0 1 S .51.51.51.51.51.51.5
d 1 0 0 541 .46 1 1 0151 .51.5}1.50.51.51.5]1.5
e 1 0 0 411.591 0 1 0} 1 0l 1}]0 1 0 1
f 1 0 1 81 .2 11 0 l1jol1]10}]!1I [/ 0
g 1 0 0 1 0 |.58] .42 |.52] .48].53].47}.52]1.48].52] .48
h 1 0 0 0 1 1.37)1.63 }1.46] .54]1.46]1.541.47]1.531.461 .54

Perceptual conclusions can be drawn through inference from an observed input.
For example, given that the word ananas was identified and produced with or
without a final -s, the values for all other variables are assessed to be as shown in
(5g) and (5h), respectively.

The use of a model like the one described above for speech recognition should
be clear; if values for these propositions can be extracted from speech input, they
can help to predict future linguistic behavior for disambiguation. BN models
constitute dynamic models in this respect. Additionally, in this model, interacting
constraints (Type 4) are encoded just like independent constraints: the conditional
distribution tables identify the contribution of each parent given each value of
every other parent. Other properties of the model are discussed below.

5. Properties of this model

The probabilities of the interactions between generalizations can be easily learned
in ‘a Bayesian model from surface-true generalizations. Moreover, this
computational mechanism displays neural properties, making it cleanly
groundable in a biologically plausible model.

Learning the conditional probabilities of a BN involves the relatively simple
statistical extraction of distributions of co-occurrent proposition states from
evidence. However, structure induction, the construction of a network (and its
architecture) from data, is harder. Several methods exist for coercing the right
kinds of structure to emerge, and I will only name some here: entropy methods,
score metrics, simulated annealing, and genetic algorithms (Jordan 1998).

Not only are BNs learnable from variable data, but they display properties that
make them particularly neurally plausible. First, all of a node’s information is
stored locally: everything a node needs to compute the effects of events elsewhere
in the network is available in the node representation itself. Neurons behave in
exactly this way. Inference in BNs is performed through the propagation of
beliefs from one node to another, in way similar to the propagation of activation
in neural systems. Finally, the result of inference in a BN is a probabilistic result,
which is analagous to the graded output of a neuron or batch of neurons
responding to an input over time.

In recent work, Wendelken and Shastri (ms) have made great strides towards a
theory of BN inference at the structured connectionist level (Feldman 1988). They -
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demonstrate that a class of BNs to which the ones presented above belong can be
reduced to structured connectionist systems with very interesting properties:
conditional probabilities can be represented as link weights, node states as
activation states, and inference propagation as spreading activation. Moreover,
they have found that learning can be done in a Hebbian manner in such systems.
Hebbian learning is responsible for associative learning — it is the strengthening of
connections that fire together. In other words, BNs can be learned at the neural
level by the simplest (and oldest) known form of associative neural
reorganization.

6. Conclusion

The argument presented above would benefit from advances on two fronts. First,
the demonstration that phonology-internal and phonology-external constraints
interact probabilistically is presented elsewhere (Bergen ms). Second, the model
must be extended to deal with Type 2 (predictable) variation. Such a model,
following along the same lines as the work presented here, would involve
knowledge of variation in forms that are morphologically-related to a given
variable form helping a language user predict properties. In other words, knowing
that a form has a certain disposition relative to a variable generalization can allow
a language learner (and for the same reason a language user) to predict behavior
of morphologically-related forms relative to other variable generalizations.

I have tried to argue the position that variation of linguistic generalizations
compels us to integrate probability into phonological models, a position in
significant accord with usage-based models of phonology, as proposed by Bybee
(1999) and Kemmer and Israel (1994). The twentieth century was marked by the
introduction of probabilistic notions of causation into physics, allowing some of
the greatest technological advances of our time. There is no reason to think that
the twenty-first century will not see the same intellectual explosion in language
science, as long as we allow ourselves the privilege of thinking probabilistically.
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