Parametric Variation in Pitch Realization of ‘Neutral Tone’ Syllables in Mandarin
Author(s): Deborah S. Davison

Please see “How to cite” in the online sidebar for full citation information.

Please contact BLS regarding any further use of this work. BLS retains copyright for both print and screen forms of the publication. BLS may be contacted via http://linguistics.berkeley.edu/bls/.

The Annual Proceedings of the Berkeley Linguistics Society is published online via eLanguage, the Linguistic Society of America's digital publishing platform.
Parametric Variation in Pitch Realization of 'Neutral Tone' Syllables in Mandarin

Deborah S. Davison
San Jose State University

Introduction

Pulleyblank 1986 proposes that languages vary parametrically as to whether tonally underspecified skeletal slots link autosegmentally via spreading from neighboring tones or are filled in by default tone values. In his analysis default tone association applies non-cyclically at the post-lexical level at the earliest in Margi, Tonga, and Tiv and at the phonetic level in Yoruba. He argues that two-tone systems such as Tiv and Margi have a default low [-upper] tone assigned by Universal Grammar in the post-lexical phonology, whereas three-tone systems such as Yoruba and Yala have a default mid [-upper], [+raised] tone assigned by UG in the phonetic component. Pulleyblank, after Liberman 1983, differentiates the phonological and phonetic rules as follows: (i) phonological rules are restricted to binary use of features, phonetic rules are gradient; (ii) the number of phonological entities is bounded, of phonetic entities unbounded; (iii) the consequences of phonetic rules often involve temporal structure and coordination; and (iv) phonetic rules cannot have lexically-conditioned exceptions.

Keating 1990 and others further distinguish phonological assimilation, in which a segment acquires the feature value of a neighboring segment (and by implication also default tone assignment, in which a default tone is assigned late in the derivation,) from phonetic assimilation, in which a segment’s value for a particular feature is partial and/or gradient and transitional. In the latter case pitch values derived by phonetic assimilation may result from interpolation through a featurally unspecified span. In Keating’s model the output from the phonological component need not be fully featurally specified before being input to the phonetic component. In consideration of the above, four options are conceivable for tonally underspecified morphemes: tone is acquired by phonological spreading, by default tone assignment in the phonological or phonetic component, or by phonetic spreading.

Evidence of phonological assimilation of tones (tone spreading) has been presented for Mexican and African tone languages (cf. Clements and Goldsmith 1984, Goldsmith 1980), as well as Southeast Asian languages (Morse 1988, Delancey 1989, Mazaudon and Michailovsky 1989), and Southern Chinese Min (Chan 1984), Cantonese (Yip 1980), and Southeast Mandarin Danyang and Jin Mandarin Changzhi dialects (Davison 1989). Analyses of default tone association in East Asian languages include Wright 1983 and Davison 1989.

Phonetic assimilation of tones, evidenced by interpolation of pitch values across tonally unspecified syllables, is attested
in Tibetan (Mazaudon, pc). Long-distance phonetic interpolation between tonal targets, not phonological spreading, also has been described for pitch assignment to noun phrases in Shanghainese and Wuxi (Zee and Maddieson 1979, Chan and Ren 1986), as well as other Wu Chinese dialects.

In Mandarin Chinese, most syllables are underlyingly fully specified for tone, and thus the contexts available for tone spreading are relatively few. The most obvious exceptions are so-called 'neutral tone' morphemes or syllables, stressless syllables of words and phrases which lack a lexically contrastive tone. Pitch realization on these syllables has been the object of intensive research, as reviewed below.

In the present study, pitch contours extracted from spectrographic measurements of controlled data samples of non-phrase-final stressless syllables pronounced by Northern Mandarin (NM) and Taiwanese Mandarin (TM) speakers are compared. The data suggest that Taiwanese Mandarin speakers assign pitch to underlyingly toneless syllables by phonetic interpolation from a mid tone value (cf. Wright 1983's identification of mid tone as the default tone for Amoy and Chaozhou Min Chinese dialects). The Taiwanese Mandarin mid tone generally is timed to occur early in the toneless syllable (at the leftmost edge), after which the pitch either may decline, or, less often, interpolate in the direction of the immediately following tone (this phenomenon also occurs with one of the NM speakers, see (8iiiia)). The choice between the latter two options appears to involve syntactic conditioning (compare (9viii) with (8iiiia) and (9vii) and see also Davison 1992), suggesting that in Taiwanese Mandarin default tone assignment is postlexical.

For the same set of examples in Northern Mandarin, non-phrase-final, underlyingly stressless syllables between preceding high, following low tones are observed instrumentally to receive pitch assignment by smoothing functions between the pitch values of the surrounding tones, without reference to a tonal target (cf. (9xii) below, where a H-O-L pattern shows the stressless syllable's pitch ending lower than the following syllable's low target in TM, but mid, interpolated between the preceding H and following L, in NM).

In addition, a stressless syllable receives a high pitch by spreading and/or reassociation of the high of a preceding high rising (MH) tone (Mandarin tone two) followed by a low tone (Mandarin tone three) in NM, not in TM (cf. (9xi) below as well as a similar phenomenon reported for Tianjin (Northern) Mandarin in Davison 1991). The latter process may be understood as a phonetically motivated redistribution of the two (mid plus high) tonal targets of the first syllable, resulting in the mid tone being associated to the original tone two syllable and the high tone to the underlyingly toneless syllable. Tone four HL could be analyzed in similar fashion.

Other differences between NM and TM are that the stressless syllable surfaces with a low pitch between two highs in NM, rather
than the mid pitch of TM (9a). Also, in two of three NM speakers, in 5/6 examples, a stressless syllable preceding a low tone three is realized as a low-rising + low (LH+L) tone contour (compare (9iv) with (9v) and (9xii)). Only one TM speaker of four, out of a total of seven examples, shows this pattern. The latter phonetic rule closely resembles the (pan-) Mandarin lexical tone sandhi rule dissipilating a sequence of low third tones to a rising plus low tone.

In sum, then, the NM pitch assignment rule appears to be considerably more complex than that for TM. Between high tones and a preceding low tone three a default low tone is apparent; moreover, in the latter case, it is variably subject to low tone dissimulation. Elsewhere there is evidence of phonetic interpolation across the stressless syllable or autosegmental spreading of preceding tones onto it. The differences between the two dialect groups suggest that TM assigns a default mid tone to lexically underspecified syllables post-lexically, whereas in NM tonally underspecified syllables enter the phonetic component as such. Low default tone assignment is then presumably the last of several options available for surface realization of pitch on these syllables, and it itself feeds phonetic low tone dissimulation, suggesting the need for ordering of default low tone insertion before dissimilation in the phonetic component of the grammar.

Compared to Pulleyblank’s results in which default mid tone is found in three tone systems, low in two tone systems, we find differences in default tone value, mid vs. low, and conditioning, absolute vs. gradient, across two mutually intelligible varieties of Mandarin dialect, both with four lexical tones. The evidence from these dialects thus suggests default tone assignment in Chinese.

Before proceeding to a review of previous work let us briefly summarize the Mandarin neutral tone facts and exemplify one aspect of the TM/NM difference described above. Recall that the traditional manner of tone contour description assigns 5 to high, 1 to low pitch. Mandarin’s four lexical tones thus are describable as T1 55 high level, T2 35 high rising, T3 214 low dipping, and T4 41 falling. Example (1) shows the four lexical tones of Mandarin and pronunciation of following toneless, stressless syllables before pause. Sources vary as to details while agreeing on the overall resulting contours.

(1) Mandarin disyllabic words illustrating lexical tones 1-4 followed by neutral ‘0’ (stressless, toneless) syllables (tone values are according to Chao 1948:27)

(a) Tone 1 (T1) high level + half-low tones: ta1+de0 'his'
(b) T2 mid-to-high rising + mid tones: shui2+de0 'whose'
(c) T3 low level + half-high tones: ni3+de0 'yours'
(d) T4 falling + low tones: da4+de0 'big ones'
(2a) illustrates the fact that a Taiwanese Mandarin toneless syllable between two high tone words has a high-mid-high pattern, with a noticeable dip in the fundamental frequency over the middle, stressless syllable. The same sequence rendered by a Northern Mandarin speaker has an even more pronounced high-low-high pattern, as in (2b), see (8a). These data serve to support the interpretation that the two Mandarin-speaking groups differ parametrically regarding the assignment of pitch values to toneless syllables.

(2) Pitch realization on stressless syllables between two high tones (H=high tone, M=mid tone, L=low tone)

(a) Taiwanese Mandarin (TM) ding1+zi0 di1 \`[the] nail [is] low\`
 \[H \quad M \quad H\]

(b) Northern Mandarin (NM) ding1+zi0 di1 \`[the] nail [is] low\`
 \[H \quad L \quad H\]

Most Taiwanese Mandarin speakers also speak Taiwanese Min, a Southern Min dialect similar to the mainland dialect of Amoy. Amoy is identified by Wright 1983 as having a default mid tone value. Assuming Taiwanese Min also has a default mid tone value, the results of the present study may be interpreted as showing that Taiwanese Mandarin speakers utilize a single parametric rule assigning default mid tone to stressless syllables for both languages, i.e. for Taiwanese Southern Min and Taiwanese Mandarin.

1. Previous studies of Mandarin neutral tone realization

Mandarin stressless, toneless syllables, also known as 'neutral tone syllables', occur as rightmost syllables of disyllabic words or morphemes, either lexically marked as such or morphologically derived by cliticization or reduplication, according to Woo 1969. Realization of pitch contour on lexically marked toneless syllables has been interpreted by some researchers as resulting from default register assignment combined with tonal spreading (Yip 1980) and by others as (in our terms) phonetic interpolation between the tones of neighboring syllables (Shen 1989:40, Woo 1969, Chao 1956:53). Here we have space to review only the work of Yip 1980.

Yip 1980 was concerned to show that evidence in support of autosegmental phonology drawn from African languages also could be found in languages such as Chinese. Yip argued that neutral tone following tones 1 and 2 acquired high tones and neutral tone following tone 4 acquire low tone from the preceding syllable, by means of autosegmental spreading; whereas tone 3 inserted a high tone onto the following neutral tone. This is summarized in (3).

In order to derive the required mid tone value on neutral tones following tones 1 and 2 Yip proposes that the neutral tone syllables, while underspecified for tone, have underlying low
register. This approach accommodates the TM but not the NM results summarized above, presented below.

(3) Yip 1980, autosegmental analysis of neutral tone pitch assignment in Mandarin (H=high tone, L=low tone). The surface mid tone value on neutral tone following T1 and T2 results from the interaction of H Tone Spreading with the neutral tone syllable's low register.

(a) T1 55 H \(\text{ma1+de0}\) 'mother's' H Tone Spreading H

(b) T2 35 MH \(\text{ma2+de0}\) 'hemp's' H Tone Spreading MH

(c) T3 214 L H \(\text{ma3de0}\) 'horse's' Floating Tone Assoc. L H

(d) T4 41 HL \(\text{ma4de0}\) 'angered' L Tone Spreading HL

In this paper we refer to the models of lexical phonology of Pulleyblank 1986 and of phonetic interpolation in context of phonetic underspecification of Keating 1988 et al. to characterize parametric variation in the realization of TM and NM. Keating suggests that in a phonology allowing surface underspecification, a segment may exit the phonology with no value for a feature, having failed to receive one either lexically or by later rule. The segment, transparent in the phonetics to any rule sensitive to that feature, thus cannot be assigned a quantitative target. When phonetic rules build trajectories between segments, the unspecified segment contributes nothing to its own trajectory, permitting its neighbors to interact with each other, such as by interpolating values for the unspecified feature across the transparent segment, joining immediately preceding and following targets.

2. Method and analysis of the present study

For this paper a sample of contextually controlled sentences containing the Mandarin stressless, toneless nominalizing suffix \(\text{zi} \) was analyzed spectrographically. The data exemplified in (8) were elicited from five Mandarin speaking natives of Taiwan and three Mandarin speakers from various areas in North China. All are college-educated graduate students or faculty of San Jose State University. Speakers were asked to read a corpus of one hundred sentences as slowly as possible while maintaining natural intonation. The slow speed was to ensure that stressless
syllables would be sufficient large in amplitude and duration as to be visible without distortion using the pitch extraction algorithm of the analysis software, the Ariel Sensimetrics Speechstation.

Of the one hundred sentences, fifteen contained the zi suffix. These were repeated twice and distributed randomly throughout the corpus. Thus a total of 30 zi suffix tokens for each speaker were elicited. All sentences analyzed for this study included a target noun phrase containing the toneless syllable zi, embedded in the carrier sentence Qing ni zai shuo __ yici 'please repeat __ once/twice/thrice again'.

Detailed comparisons were made of duration of and pitch variation across the toneless syllable, measured from narrow band spectrograms and a superimposed pitch track traced onto the tenth harmonic. A sample analyzed token appears in (4).

(4) Spectrograms with superimposed pitch tracing of the tenth harmonic. Neutral tone between stressed syllables in Taiwanese Mandarin. Subject: Lin Hui Fang

```
...say 'Prince’s dynasty' one time.' Tones:T1H 4HL 0 2MH 1H 4HL.
```

Keating’s distinction between phonological spreading and phonetic interpolation to underspecified segments may be applied to the question of pitch assignment to neutral tone syllables in Mandarin. Interpolation across a toneless syllable located between two stressed H or L tones or between HL and LH tones might be expected to look like the graphs in (5). The dotted line indicates an interpolated pitch value between target values of preceding and following syllables. Notice that it would be impossible to distinguish between interpolation or spreading applying between like tones: HH or LL. In either case the pitch contour would be flat. The crucial cases would rather be HL and LH. A spreading tone would be expected to show a steep slope over the neutral tone syllable, rather than a gradual one as in (5c-d).

(5) Phonetic interpolation between tonal targets of adjacent stressed syllables (idealization)

(a) High tone - neutral - high (b) Low tone - neutral - low
(c) High tone - neutral - low (d) Low tone - neutral - high

Retuning to an analysis of the data in (7), summarized in
(8), we see that for TM, a mid to low falling contour typifies
stressless syllable realizations between all tone height
combinations, with the exception of cases of random individual
variation noted above, as well as in certain contexts involving a
preceding T3. As Yip and others have argued, Mandarin T3 is well
analyzed as an underlying low plus a floating high tone, as in
(3c) above. According to these data, in TM, just in case a T3 is
followed by a toneless syllable followed by a high tone, T3’s
floating H may be timed to surface either late in the stressless
syllable, giving a L-LM-H or L-LH-H pattern, or throughout the
toneless syllable, giving the L-H-H pattern. In contrast, in the
L-0-L pattern in (7bv), preceding and following T3s result in the
leftmost T3’s floating high tone to be realized as mid-falling
tone, like TM stressless syllables following all tones other than
T3. TM thus could be described as assigning a default mid tone
postlexically to stressless syllables, generally timed to occur
early in the syllable, after which the pitch typically declines
(postlexically, as noted above, because of evidence of the
influence that the type of interpolation, either from the left or
between left and right targets, depends partially on syntactic

In contrast, NM speakers may be described as leaving
stressless syllables underspecified until they exit the
phonological component. In the phonetic component autosegmental
spreading from a preceding high rising T2 applies optionally and
gradiently. Between low and high targets interpolation of the
sort predicted by Keating’s model is an option. Otherwise, a
default low tone is realized, which in turn may be subject to low
tone dissimilation, as noted above.

One final point of difference, not previously mentioned, is
that NM speakers in this corpus always render T3 low + floating
high as L-LH. TM speakers, on the other hand, apparently are not
as constrained as to timing of the H in the stressless syllable.
This would appear to raise the possibility for NM but not for TM
that T3 is underlyingly LLH, as some analysts recently have
described it, and that its contour is realized less variably than
previously thought. Notice that if NM T3 is understood as a
superlong low level plus low rising tone, then its surface
manifestations (‘ailotones’) could be analyzed as being the
realization of one or the other half of or alternatively all of
underlying form: all in the case of prepausal position (214); the
second half (14) over stressless syllables and preceding another
T3; and the first half elsewhere.

(6) Summary, parametric differences between TM and NM pitch
realization on non-phrase-final stressless syllables

<table>
<thead>
<tr>
<th></th>
<th>TM</th>
<th>NM</th>
</tr>
</thead>
</table>
(7) Duration and fundamental frequency at pitch turning points for nominal suffix *zi* and immediately preceding and following syllable, for 10 speakers. TM = Taiwanese Mandarin speakers (subjects LH, LZ, GM, PL, XG, LZ), NM = Northern Mandarin speakers (subjects TF, JL, GG). R=rising pitch, F=falling pitch, L=level pitch, CC=concave pitch, CV=convex pitch. D=duration in milliseconds. (Speakers varied between fa3+zi0 and fa2+zi0 pronunciations for the word `method'. Results relevant to each category for this variably pronounced word are in boldface type.)

(a) high - unstressed - high (Ts 101, 104, 201, 204)

i. *Qing3 ni3 zai4 shuo1 ding1+zi0 san1 ci4.*

Please you again say `nail' 3 time.

<table>
<thead>
<tr>
<th>ding1</th>
<th>zi0</th>
<th>san1</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHF 236-232, F4, D137 197-187, F10, D86</td>
<td>222-220, F2, D144</td>
<td></td>
</tr>
<tr>
<td>LZC 123-122, F1, D176 119-100, F19, D108</td>
<td>115, L, D211</td>
<td></td>
</tr>
<tr>
<td>GMH 248, L, D174 199-144, F55, D78</td>
<td>220-222, R2, D189</td>
<td></td>
</tr>
<tr>
<td>PLD 320, L, D138 197-177, F19, D69</td>
<td>259-285, R6, D87</td>
<td></td>
</tr>
<tr>
<td>XGC 189-183, F6, D178 134-115, F19, D94</td>
<td>144-140, F4, D128</td>
<td></td>
</tr>
<tr>
<td>LZC 222-24, R2, D178 199-195, F4, D61</td>
<td>232-222, F10, D168</td>
<td></td>
</tr>
</tbody>
</table>

ii. *...he2+zi0 san1...* 'Please repeat `box' three times.'

<table>
<thead>
<tr>
<th>he2</th>
<th>zi0</th>
<th>san1</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHF 214-212, F2, D93 210-207, F3, D78</td>
<td>222-203, 19, D198</td>
<td></td>
</tr>
<tr>
<td>LZC 115-122, R7, D220 113-106, F7, D105</td>
<td>114-115, R1, D271</td>
<td></td>
</tr>
<tr>
<td>GMH 201-224, R23, D132 201-185, F16, D74</td>
<td>222-214, F8, D172</td>
<td></td>
</tr>
<tr>
<td>PLD 203-242, R39, D148 222-214, F8, D81</td>
<td>251-253, R2, D111</td>
<td></td>
</tr>
<tr>
<td>XGC 140-164, R24, D219 148-119, F29, D136</td>
<td>148-152, R4, D141</td>
<td></td>
</tr>
</tbody>
</table>

iii. *...he2+zi0 dan4...* 'Please repeat `nuclear bomb'.'

<table>
<thead>
<tr>
<th>he2</th>
<th>zi0</th>
<th>dan4</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHF 207-294, R67, D197 255-164, F91, D150</td>
<td>222-220, F2, D139</td>
<td></td>
</tr>
<tr>
<td>LZC 201-275, R74, D172 164-0, F24, D125</td>
<td>208-195, F13, D83</td>
<td></td>
</tr>
<tr>
<td>GMH 201-226, R35, D168 113, L D42</td>
<td>228, L D140</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TM</th>
<th>LHF</th>
<th>LZC</th>
<th>GMH</th>
</tr>
</thead>
</table>

T010, T201, T204
PLD 195-261, R66, D99 177-166, F11, D69 263-195, F68, D131
XGC 134-152, R18, D129 138-119, F19, D86 146-115, F31, D158
LHF 197-232, R35, D112 185-187, R2, D47 232-191, F40, D241
NM
TF 222-300, R78, D199 199-162, F38, D97 275-179, F96, D172
JL 177-203, R26, D110 189-138, F51, D87 265-154, F111, D259
GG 234-273, R39, D137 109, L, D39 268-189, F80, D212

iiia. …fa2+zi0 man4… 'Please repeat 'the method is slow'.'

TM fa2

zi0 man4 T204

LZC 133-114, F19, D144 114-125, R11, D100 130-111, F19, D128
GHM 214-191, F23, D138 234-234, CC0, D198 234-197, F37, D66
PLD 189-238, CC49, D149 259-228, CC31, D243 259-199, F60, D99
XGC 142-115, F27, D263 148-164, CC26, D337 186-126, F40, D148
NM
TF 214-302, R88, D168 283-285, CC18, D288 281-167, F114, D163
JL 85-83, F2, D121 197-269, R72, D113 184-146, F18, D775
GG 224-250, CC26, D205 224-201, F23, D99 220-193, CV27, D236

(b) low - unstressed - low (T4+0+T3, 303)

iv. …taid4+zi0 hao3… 'Please repeat 'the prince is fine'.'

zia0

hao3 T403

LZC 143-114, F29, D185 114-111, F3, D141 104, L, D185
GHM 265-210, F55, D100 187-208, R21, D130 169-154, F15, D72
PLD 333-255, F78, D135 199-277, R78, D211 177-191, D41, D381
XGC 232-154, F78, D177 126-154, R28, D143 111-99, F12, D108
LHF 263-214, F49, D108 109-113, R4, D37 177-58, F119, D144
NM
TF 332-212, F120, D148 208-294, R86, D137 186-136, F30, D140
JL 304-189, F115, D187 203-277, R74, D113 182-166, R4, D90
GG 281-207, F74, D186 212-232, R20, D119 103-95, F8, D91

v. …fa3+zi0 hao3… 'Please repeat 'the method is fine'.'

TM fa3

zi0 hao3 T303

LZC 112-111, F1, D179 123-114, F9, D84 114-108, F6, D378
GHM 197-173, CC24, D164 201-199, F2, D76 201-160, F41, D163
PLD 228-285, R37, D103 232-220, F12, D57 169-175, CC6, D273
XGC 156-126, F30, D234 158-128, F30, D182 126-101, F25, D188
NM
TF1 224-302, R78, D259 302, L, D54 195-72, F123, D200
TF 228-285, R57, D137 183-177, F6, D75 189-175, CC8, D273
JL1 152-138, CC14, D119 246-281, R15, D64 72-80, R6, D108
JL 185-140, CC45, D143 220-250, R30, D120 58-60, R2, D46
GG1 220-253, CC33, D236 214-250, R36, D167
GG 197-244, R47, D215 222-240, R18, D160 208-210, R2, D109

(c) low - unstressed - high (Ts 301, 304, 401, 404)

vi. …fa3+zi0 man4… 'Please repeat 'the method is slow'.'

TM fa3

zi0 man4 T304
<table>
<thead>
<tr>
<th>Language</th>
<th>Code</th>
<th>Words</th>
<th>Code</th>
<th>Words</th>
<th>Code</th>
<th>Words</th>
<th>Code</th>
<th>Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNZ</td>
<td>133-114</td>
<td>F19, D144</td>
<td>114-125</td>
<td>R11, D100</td>
<td>130-111</td>
<td>F19, D128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GMH</td>
<td>214-191</td>
<td>F23, D138</td>
<td>234-234</td>
<td>CCO, D198</td>
<td>234-197</td>
<td>F37, D68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLD</td>
<td>189-238</td>
<td>CCA9, D149</td>
<td>259-228</td>
<td>CC31, D243</td>
<td>259-199</td>
<td>F60, D99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XGC</td>
<td>142-115</td>
<td>F27, D263</td>
<td>148-164</td>
<td>CC26, D337</td>
<td>166-126</td>
<td>F40, D148</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TF</td>
<td>214-302</td>
<td>R88, D168</td>
<td>283-285</td>
<td>CC18, D288</td>
<td>281-187</td>
<td>F114, D163</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JL</td>
<td>85-93</td>
<td>F2, D121</td>
<td>197-269</td>
<td>R72, D113</td>
<td>164-146</td>
<td>F18, D275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GG</td>
<td>224-250</td>
<td>CC26, D205</td>
<td>224-201</td>
<td>F23, D99</td>
<td>220-193</td>
<td>CV27, D236</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

vii. **tai4+zi0 san1**... 'Please repeat 'prince' three times.'

<table>
<thead>
<tr>
<th>Language</th>
<th>Code</th>
<th>Words</th>
<th>Code</th>
<th>Words</th>
<th>Code</th>
<th>Words</th>
<th>Code</th>
<th>Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM</td>
<td>tai4</td>
<td>zi0</td>
<td>san1</td>
<td></td>
<td>T401</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GMH</td>
<td>246-197</td>
<td>F39, D230</td>
<td>148-85</td>
<td>F63, D180</td>
<td>222-220</td>
<td>F2, D134</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLD</td>
<td></td>
<td></td>
<td>302-422</td>
<td>F60, D81</td>
<td>175-207</td>
<td>CC32, D302</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XGC</td>
<td>191-128</td>
<td>F63, D205</td>
<td>126-87</td>
<td>F39, D70</td>
<td>150-158</td>
<td>R6, D101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TF</td>
<td>332-212</td>
<td>F120, D210</td>
<td>173-152</td>
<td>F21, D114</td>
<td>263-250</td>
<td>F13, D189</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JL</td>
<td>261-154</td>
<td>F7, D235</td>
<td>115-93</td>
<td>F22, D88</td>
<td>208-210</td>
<td>R2, D209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GG</td>
<td>275-212</td>
<td>F63, D210</td>
<td>187-191</td>
<td>F6, D93</td>
<td>222-220</td>
<td>F2, D180</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

viii. **tai4+zi0 an1**... 'Please repeat 'the prince is peaceful'.'

<table>
<thead>
<tr>
<th>Language</th>
<th>Code</th>
<th>Words</th>
<th>Code</th>
<th>Words</th>
<th>Code</th>
<th>Words</th>
<th>Code</th>
<th>Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM</td>
<td>tai4</td>
<td>zi0</td>
<td>an1</td>
<td></td>
<td>T401</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNZ</td>
<td>156-117</td>
<td>F39, D148</td>
<td>121-128</td>
<td>R7, D121</td>
<td>121-126</td>
<td>R5, D205</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GMH</td>
<td>250-197</td>
<td>F53, D140</td>
<td>169-152</td>
<td>F17, D70</td>
<td>197-203</td>
<td>R6, D289</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLD</td>
<td>312-234</td>
<td>F78, D135</td>
<td>195-183</td>
<td>F12, D110</td>
<td>366-378</td>
<td>R12, D98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XGC</td>
<td>183-128</td>
<td>F55, D168</td>
<td>115-101</td>
<td>F14, D73</td>
<td>138-154</td>
<td>R16, D207</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TF</td>
<td>320-218</td>
<td>F102, D124</td>
<td>177-152</td>
<td>F23, D96</td>
<td>261-253</td>
<td>F8, D132</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GG</td>
<td>292-205</td>
<td>F87, D184</td>
<td>173-113</td>
<td>F60, D96</td>
<td>216-240</td>
<td>R26, D207</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ix. **tai4+zi0 fan4**... 'Please repeat 'the prince's food'.'

<table>
<thead>
<tr>
<th>Language</th>
<th>Code</th>
<th>Words</th>
<th>Code</th>
<th>Words</th>
<th>Code</th>
<th>Words</th>
<th>Code</th>
<th>Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM</td>
<td>tai4</td>
<td>zi0</td>
<td>fan4</td>
<td></td>
<td>T404</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNZ</td>
<td>132-109</td>
<td>F23, D180</td>
<td>111-109</td>
<td>F2, D136</td>
<td>128-111</td>
<td>F17, D128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GMH</td>
<td>244-197</td>
<td>F47, D180</td>
<td>130-87</td>
<td>F43, D89</td>
<td>220-171</td>
<td>F49, D162</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLD</td>
<td>312-242</td>
<td>F70, D149</td>
<td>162-142</td>
<td>F20, D62</td>
<td>265-212</td>
<td>F53, D120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XGC</td>
<td>210-140</td>
<td>F70, D233</td>
<td>125-102</td>
<td>F23, D177</td>
<td>160-111</td>
<td>F49, D174</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TF</td>
<td>310-218</td>
<td>F92, D168</td>
<td>166-154</td>
<td>F12, D79</td>
<td>277-177</td>
<td>F100, D142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JL</td>
<td>322-160</td>
<td>F162, D220</td>
<td>121-107</td>
<td>F14, D105</td>
<td>294-144</td>
<td>F150, D241</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GG</td>
<td>302-212</td>
<td>F90, D183</td>
<td>210-193</td>
<td>F17, D115</td>
<td>277-214</td>
<td>F63, D198</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(d) high - unstressed - low (Ts 103, 203)

xi. **ding1+zi0 liang3**... 'Please repeat 'nail' two times.'

<table>
<thead>
<tr>
<th>Language</th>
<th>Code</th>
<th>Words</th>
<th>Code</th>
<th>Words</th>
<th>Code</th>
<th>Words</th>
<th>Code</th>
<th>Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM</td>
<td>ding1</td>
<td>zi0</td>
<td>liang3</td>
<td></td>
<td>T103</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNZ</td>
<td>128-125</td>
<td>F3, D211</td>
<td>117-109</td>
<td>F8, D119</td>
<td>113-115</td>
<td>R2, D248</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GMH</td>
<td>250-244</td>
<td>F6, D168</td>
<td>115-184</td>
<td>R49, D128</td>
<td>173-144</td>
<td>F29, D140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLD</td>
<td>320-324</td>
<td>R4, D230</td>
<td>187-169</td>
<td>F18, D136</td>
<td>185-312</td>
<td>F53, D213</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TF</td>
<td>320-300</td>
<td>F20, D198</td>
<td>189, L, D150</td>
<td>185-154</td>
<td>CC31, D205</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JL</td>
<td>267-285</td>
<td>R18, D229</td>
<td>167-183</td>
<td>R16, D103</td>
<td>175-154</td>
<td>F21, D106</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Syllable duration measurements of the data suggest that both speaker groups share the range of syllable weights proposed to typify all Chinese languages, e.g. by Duanmu 1990, who argues that all stressed non-final syllables are bimoraic, all final syllables are potentially trimoraic, and completely unstressed 'toneless' syllables are monomoraic. Duanmu's typology and his "no contour principle" predict that toneless syllables can support a single tone. Some of the NM evidence, such as T2 also T4 reassociation of the second tone to the following stressless syllable, supports his view. However, in general a considerably enriched range of possible realizations of pitch on stressless syllables is attested, including contours (some of which are, to be sure, phonetically longer than average.)

Evidence from 40 Chinese languages and dialects presented in Davison 1989 shows that distribution of the two parametric values of phonetic default tone realization + interpolation and/or spreading vs. phonological default tone assignment is areal, not genetic, inasmuch as Chinese languages found north of the Yangtze generally follow the Northern Mandarin pattern, those south of the Yangtze the Taiwanese/Taiwanese Mandarin one. The widely dispersed group of genetically related Mandarin dialects thus is split in two. Borderline Jin Mandarin dialects show both values (Huojia) or spread tones to toneless syllables phonologically (Changzhi), see Davison 1989 & 1990.
1. Thanks are due Gao Ge, Guo Min-hui, Lin Hui-fang, Lin Zhi-cheng, Pan Lien-tan, Tan Fu, Xie Guan-cheng, and Yang Ming for serving as linguistic consultants for this research. I also am indebted to Alan Strange of the Music Department of San Jose State University for use of the Ariel Sensimetrics Speechstation.

2. Additionally, one systematic exception may be noted. In (Giv) 4/5 TM speakers (as well as 3/3 NM speakers) produced a rising tone across the stressless syllable, the syllable itself being of unusually long duration, in the range of 113-294 milliseconds, with 6/8 tokens over 200 ms in length. The standard analysis of this example is that the word tai+zi 'prince' has two fully-toned syllables, T4 + T3, and that in the sequence tai+zi hao 'the prince is fine' the T3 T3 sequence undergoes the Mandarin third tone sandhi rule. Elsewhere the zi of taizi resembles a stressless syllable, being short of duration and acquiring pitch as for stressless syllables, cf(Gvi-viii).

3. Due to space considerations the table does not include values for the difference in Hz between the endpoint of the tone on the first syllable and the beginning point of the point on the second syllable; and the endpoint of the tone on the second syllable and the beginning point of the tone on the third syllable. These numbers, easily calculated, are twice as large for NM as TM speakers, hence the interpretation of NM as H-L-H vs. TM as H-M-H.
REFERENCES

Yuyan Jiaoxue yu Yanjiu 2:82-98.

