The Conceptual Structure of Intentional Action: Data from Kathmandu Newari
Author(s): David Hargreaves

Please see “How to cite” in the online sidebar for full citation information.

Please contact BLS regarding any further use of this work. BLS retains copyright for both print and screen forms of the publication. BLS may be contacted via http://linguistics.berkeley.edu/bls/.

The Annual Proceedings of the Berkeley Linguistics Society is published online via eLanguage, the Linguistic Society of America's digital publishing platform.
THE CONCEPTUAL STRUCTURE OF INTENTIONAL ACTION: DATA FROM KATHMANDU NEWARI

David Hargreaves
University of Oregon
Eastern Oregon State College

1.0 INTRODUCTION.

Consider a common intuition about intentional action: an individual has something in mind, a plan or goal, and initiates a behavior, typically a movement, in accordance with the plan. More specifically, we might characterize intentional action as self-initiated force in accordance with a particular mental representation. This paper argues that the Newari system of finite inflection construes intentional action in just this fashion.

This account is consistent with a number of approaches to the problem of intentional action, in particular, Brand’s (1979; 1984) work in the philosophy of action, Delancey’s (1986; 1990) work on the Lhasa Tibetan auxiliary system, and Budwig’s (1990) work on agency in child language acquisition. Following suggestions by Brand (1984), we can distinguish two components of intentional action corresponding to two traditionally distinct semantic domains.²

The first domain views intentional action from the perspective of propositional attitudes and is concerned with the idea that the actor has a particular mental state, the contents of which characterize and structure the action. We can call this the representational domain (cf. Fauconnier 1985; Jackendoff 1987; Kamp 1990; Searle 1983; Sells 1987).

On the other hand, from Sapir’s (1917) earliest discussion of active case marking through Talmey’s (1976; 1988) seminal work on causation types and force dynamics, intentional action has often been viewed as a type of force dynamic, a self-initiated force without causal antecedents. Thus, the second domain is concerned with the idea that an individual initiates and guides a behavior independent of causal antecedents. We can call this the force dynamic.

2.0 THE NEWARI INFLECTIONAL SYSTEM.

The Newari inflectional system, first described and analyzed by Edward Bendix (1974; 1983) and Austin Hale (1980), both of whom circumscribed the essential aspects of the system, can be summarized in roughly the following way. There is a set of verbal inflections, which I’ll call simply SET1, that only occur with those verbs that can plausibly be interpreted as involving a self-initiated force dynamic, provided that the attribution of this force dynamic to an individual is consistent with certain
evidential or logophoric principles. In simple clauses, the SET1 inflectional form occurs whenever:

1) the verb describes an action type involving the initiation of force/movement by an actor, and
2) the speech act is either: (a) declarative and the actor is first-person, or (b) interrogative and the actor is second-person.

The declarative paradigm below is illustrated with two classes of verbs. The verb ton- 'drink' describes a type of event which normally involves a self-initiated force dynamic; these will be called Control verbs. In contrast, the verb thu- 'realize, understand' does not describe any kind of force dynamic which one may initiate; these will be called Non-Control verbs. Note, then, the SET1 form in [ex.1], in contrast to the rest of the paradigm.

\[
\begin{array}{ll}
\text{Control} & \text{Non-Control} \\
\hline
(1) & \\
\text{jiː:} & \text{jiː:} \\
\text{OːpwO ton-a} & \text{thul-O} \\
1\text{ERG} & 1\text{ERG} \\
\text{alot} & \text{realize-SET2} \\
\text{drink-SET1} & "I realized (it)." \\
I drank a lot." & "I realized (it)." \\
(2) & \\
\text{chōː:} & \text{chōː:} \\
\text{OːpwO ton-O} & \text{thul-O} \\
2\text{ERG} & 2\text{ERG} \\
\text{alot} & \text{realize-SET2} \\
\text{drink-SET2} & "You realized (it)." \\
$"$You drank a lot." & "You realized (it)." \\
(3) & \\
\text{wōː:} & \text{wōː:} \\
\text{OːpwO ton-O} & \text{thul-O} \\
3\text{ERG} & 3\text{ERG} \\
\text{alot} & \text{realize-SET2} \\
\text{drink-SET2} & "S/he realized (it)." \\
"S/he drank a lot." & "S/he realized (it)."
\end{array}
\]

The SET1 form occurs only with first person and a Control verb. A SET1 form with a Non-Control verb, such as thu- 'realize, understand', is not acceptable, nor is the SET1 form acceptable anywhere else in the declarative paradigm for simple clauses.

Now, contrast the declarative paradigm with the interrogative paradigm below, noting the 2nd person form in [ex.5]. In contrast with the declarative paradigm, in the interrogative paradigm, the SET1 form occurs only with second person and a Control verb. This contrast is neutralized with the Non-Control verb.

\[
\begin{array}{ll}
\hline
(4) & \\
\text{jiː:} & \text{jiː:} \\
\text{OːpwO ton-O} & \text{thul-O} \\
1\text{ERG} & 1\text{ERG} \\
\text{alot} & \text{realize-SET2} \\
\text{drink-SET2} & Q \\
$"$Did I drink a lot?" & "Did I realize (it)?" \\
\text{la} & Q
\end{array}
\]
What accounts for this distribution? A necessary, but not sufficient feature is that the verb must be of the Control class. However, if it were simply a case of lexical properties, the paradigm would have a straight active/non-active distribution. What is it, then, that accounts for the person and discourse role asymmetries?

First, consider what is entailed by saying that an intentional action involves a particular mental representation. The mental representation has a specific content, which, strictly speaking, is only directly accessible to the actor. Therefore, since the content of the mental representation is only directly accessible to the actor, and calling an action intentional entails a force dynamic in accordance with a mental representation, it follows that there is an irreducible person asymmetry in the direct attribution of intentional action to an individual.

In principal, then, only the person who performs the action has the evidential authority to claim directly that the force dynamic was, in fact, in accordance with the contents of the mental representation. All other claims are inferential. Thus, along with our characterization of intentional action as force in accordance with a mental representation, we can add an evidential principle of privileged access to mental representations.

Finally, there is a third factor to consider, familiar from the prescriptive tradition of English "shall" vs. "will" (Boyd & Boyd 1980). The evidential principle of privileged access, and the person asymmetry which is entailed by it, interact with the roles of the participants in a speech event, in the following sense: From pragmatic theory we make the assumption that one of the pre-conditions for a declarative speech act is that the speaker has evidential authority for the information in the utterance; in contrast, one of the pre-conditions for an interrogative speech act is the assumption that the addressee has the evidential authority for the information in the utterance (cf. Gordon and Lakoff 1971). In short, the principle of privileged access interacts with the polarity of epistemic authority in statements and questions. The speaker in a declarative speech act and the addressee in an interrogative speech act share a common discourse role, which we can call the epistemic authority.

These three components, then, can together account for the distribution of the Newari inflection forms (cf. Hargreaves to appear). First,
there is a conceptual model of intentional action in which: (a) an individual
initiates and guides force or movement independent of causal antecedents,
and (b) the force dynamic is in accordance with a particular mental
representation. Second, there is an evidential principle constraining privileged
access to mental representations. Third, a discourse/pragmatic principle
attributes the role of epistemic source to the speaker in declarative utterances
and the addressee in interrogative utterances.

3.0 INTENTION AS A FORCE DYNAMIC.
The distribution of SET1 forms suggests that there is something about
the attribution of intentional action that makes it subject to evidential and
discourse role constraints. The distribution of SET1 forms follows directly if
the conceptual structure of intentional action is construed as involving an
internal state subject to the principle of privileged access.

One possibility is that the internal state can be construed in terms of
a primitive feature, e.g. (+/-) Volition, which is then viewed as an internal
state subject to evidential constraints. However, the evidence suggests that this
view of intentional action as having a simple feature (+/-) Volition is not
quite adequate.

Consider again our SET1 example with the verb *ton- 'drink', repeated
in [ex.7] below:

(7) jī: O:pwO ton-a
 1ERG alot drink-SET1
 "I drank a lot."

SET2 forms are not acceptable with first person Control verbs, except,
however, with evidential disclaimers, as in [ex.9-11] below.

*(8) jī: O:pwO ton-O
 1ERG alot drink-SET2

(9) jī: mO-cae:kkO O:pwO ton-O
 1ERG NEG-feelingly alot drink-SET2
 "I (unconsciously) drank a lot/too much."

(10) jī: O:pwO ton-O khOnisa
 1ERG alot drink-SET2 it.appears
 "(It appears) I drank a lot/too much."

(11) jī: O:pwO ton-O hō
 1ERG alot drink-SET2 it’s.said
 "(It’s said) I drank a lot/too much."
It's important here to note that in [ex.9-11], the actor initiates and guides the force, remaining the proximate causal antecedent of the action. That is, the force dynamic in [ex.9-11] does not differ from [ex.7]. In fact, without some explicit causative morphology, it is impossible to construe the verb ton- 'drink' without self-initiating force.

What distinguishes [ex.9-11] from [ex.7], then, is not the force dynamic itself, but rather the sort of relationship which is asserted between what the actor was aware of, or had in mind, and what the clause, or more specifically, the predicate phrase (VP) characterizes as the force dynamic and action sequence. In other words, SET1 inflectional forms co-index the contents of the actor's mental representation at the time of the action with the semantic content of the action as it is characterized in the clause.

In [ex.9-11], SET2 inflection follows from the fact that, as characterized in the clause, the particular force dynamic was not what the speaker had in mind. The evidential disclaimers obviate the representational component but not the force dynamic. In contrast to [ex.9-11], the SET1 form in [ex.7] indicates that the force dynamic, as characterized in the clausal semantic representation, was in fact initiated and guided in accordance with the actor's mental representation, i.e. plan.

Notice the dilemma this creates for a simple binary Volitional/Non-Volitional distinction. If we identify the feature (+)Volition with the force dynamic, we end up saying that the "drinking a lot" was volitional in all cases; we have not distinguished cases such as [ex.7] from those in [ex.9-11].

On the other hand, if we say the feature (+)Volition characterizes the unified concept "force in accordance with an appropriate representation", then we are left without a way to characterize the force dynamic independently of the evidential considerations. In fact, the force dynamic underlies the distinction between the Control class of verbs, which potentially allow SET1 inflection, and non-Control verbs, which categorically prohibit SET1 inflection. Thus, we need to distinguish the force dynamic from the representational considerations.

It makes more sense to identify two domains which make up the conceptual structure of an intentional action: force dynamic and representational, both of which must be present to characterize an action as intentional.

3.1 Fluid Verbs. In fact, there is a small, intermediate class of Fluid verbs, which allow either SET1 or SET2 inflection, without requiring evidential disclaimers. The behavior of this Fluid class, in contrast with the Control and Non-Control classes, suggests that the force dynamic is best viewed as part of the lexical structure of Control verbs.

Consider the following contrast between the Control verb dan- 'stand up', the Fluid verb dun- 'submerge', and the Non-Control verb then- 'arrive,
reach'. As we have seen, with the Control class, as in [ex.12-14], the SET2 form is unacceptable without an evidential interpretation.

(12) ji lasa-e dan-a
 1ABS bed-LOC stand-SET1
 "I stood up in the bed."

*(13) ji lasa-e dan-O
 1ABS bed-LOC stand-SET2

(14) ji mO-caekkO lasa-e dan-O
 1ABS NEG-consciously bed-LOC stand-SET2
 "I unconsciously stood up in the bed."

With Fluid verbs, on the other hand, both SET1 and SET2 are possible without evidentials. In [ex.15] below, SET1 indicates the self-initiated force dynamic; in [ex. 16] below, SET2 indicates the absence of the force dynamic. In other words, [ex.15] is just like a Control verb, while [ex.16] is just like a Non-Control verb.

(15) ji lOhk-e dun-a
 1ABS water-LOC submerge-SET1
 "I dipped into the water."

(16) ji lOhk-e dun-O
 1ABS water-LOC submerge-SET2
 "I sank in the water."

However, Non-Control verbs [ex.17-18] do not allow SET1 forms.

*(17) ji chē-e then-a
 1ABS home-LOC arrive-SET1

(18) ji chē-e then-O
 1ABS home-LOC arrive-SET2
 "I arrived home."

Defined by these distributional criteria, the class of Fluid verbs is actually quite small; and is subject to significant speaker variation. The list of verbs which I have found to allow either SET1 or SET2 forms without evidentials is given below:
Fluid Verbs

gwaratul- 'roll over' napO=la- 'meet',
sOn- 'move' thwa- 'bump/kick'
kha- 'shake, tremble' thi- 'touch'
dun- 'submerge, dip' ghwa- 'bump/elbow'
ju- 'become' ca- 'feel, sense'

This suggests that we can represent lexical markedness properties of the force dynamic by saying that the concept of an initiating force is conflated (in the sense of Talmy 1985) as part of the lexical structure of Control verbs, but is unspecified for Fluid verbs, and absent for Non-Control verbs.

<table>
<thead>
<tr>
<th>dan-</th>
<th>'stand up'</th>
<th>Control</th>
<th>[INITIATE FORCE + MOTION]</th>
</tr>
</thead>
<tbody>
<tr>
<td>dun-</td>
<td>'submerge'</td>
<td>Fluid</td>
<td>[()] MOTION]</td>
</tr>
<tr>
<td>then-</td>
<td>'arrive'</td>
<td>Non-Control</td>
<td>[MOTION]</td>
</tr>
</tbody>
</table>

In other words, SET1 inflection entails the force dynamic and asserts that the force is in accordance with the mental representation. In contrast, SET2 indicates no appropriate relationship between the force dynamic and the representation; this can be a result of the fact that:

(a) there was no force dynamic in the first place,
(b) the force, as indicated, was not in accordance with an appropriate representation as in [ex.9-11],
(c) evidential and discourse principles constrain the access and attribution of mental representation.

We can attribute the interpretation of Fluid verbs to the following principle: Fluid verbs are unspecified for the force dynamic; therefore, the presence of SET1 entails the force dynamic for a Fluid verb. In contrast, since Fluid verbs are unspecified for a force dynamic, SET2 with a Fluid verb is interpreted as lacking the force dynamic. This contrasts with Control verbs, where SET2 inflection is interpreted, not as a lack of force, but rather as a lack of appropriate representation.

4.0 INTENTIONAL ACTION AS MENTAL REPRESENTATION.

The suggestion thus far is that SET1/SET2 inflectional forms index the relationship between what the actor was aware of, or had in mind, and what the clause, or more specifically, the predicate phrase (VP) characterizes as the force dynamic and action sequence. The grammar of Newari provides further evidence for how the actor's mental representation might be
characterized semantically. The data come from a complement structure in which a form of reported speech is used to express what we might call "premeditated action".

Consider first the contrast between SET1 and SET2 Non-past (NPST) forms in [ex.19-20]. The distribution of the SET1/SET2 forms in the Non-Past is identical to the distributions we have observed thus far.

(19) jī: la nO-e
1ERG meat eat-NPST/SET1 "I'll eat meat."

(20) wō: la nO-i
3ERG meat eat-NPST/SET2 "He/she will eat meat."

The SET1 form may also be used logophorically, as in the contrast [ex.21-22] in the reported speech below, with the hearsay evidential hŌ.

(21) wō: la nO-e hŌ
3ERG meat eat-NPST/SET1 it's.said
"(He,) said he will eat meat."

(22) wō: la nO-i hŌ
3ERG meat eat-NPST/SET2 it's.said
"(Someone) said that he will eat meat."

The logophoric function also occurs with complements of the verb dhO- 'speak, say'. The form dhOka; is a causative form grammaticalized as a complementizer.

(23) jī: la nO-e dhOka: dhOy-a
1ERG meat eat-NPST/SET1 COMP say-SET1 "I said that I'll eat meat."

(24) wō: la nO-e dhOka: dhal-O
3ERG meat eat-NPST/SET1 COMP say-SET2 "He said that he will eat meat."

(25) wō: la nO-i dhOka: dhal-O
3ERG meat eat-NPST/SET2 COMP say-SET2 "He said that he will eat meat."
Constructions with cognition verbs as in [ex.26-27] below are isomorphic with the complement structure for reported speech as in [ex.23-25] above.

(26) jì: la nO-e dhOka: siu:
1ERG meat eat-NPST/SET1 COMP know-IMPERF/SET2
"I know that I’ll eat meat."

(27) wō: la nO-e dhOka: siu:
3ERG meat eat-NPST/SET1 COMP know-IMPERF/SET2
"Hei knows that hei’ll eat meat."

The complementation structure can also be used for clauses which express a causal relation between a thought and a subsequent action as in [ex.28] below.

(28) ji-tO da-i dhOka: bisyū won-a
1-DAT hit-NPST/SET2 COMP flee go-PST/SET1
"(I) fled thinking (he) will beat me."

When the main and complement clause subjects are coreferential, the structure can be used to indicate purpose. In other words, the plan of action is represented as thought or “inner speech”.

(29) wo-yatO da-e dhOka: won-a
3-DAT beat-NPST/SET1 COMP go-SET1
"(I) went thinking (I) will hit him."

(30) ji-tO da-e dhOka: wol-O
3-DAT beat-NPST/SET1 COMP come-SET2
"(Hei) came thinking (hei) will hit me."

Finally, the logophoric marking in the complement clause is also found in a complementation pattern indicating "premeditation".

(31) jì: la nO-e dhOka: nOy-a
1ERG meat eat-NPST/SET1 COMP eat-SET1
"I ate meat (thinking > intending) to eat meat."

(32) wō: la nO-e dhOka: nOl-O
3ERG meat eat-NPST/SET1 COMP eat-SET2
"He ate meat (thinking > intending) to eat meat."
The isomorphism in [ex.24-32] suggests a unified schema for the characterization of reported speech and mental representations. The specific properties of the schema which lead to the interpretation of premeditated action are given below:

1) There is a self-initiated force dynamic,

2) There is a mentally represented action plan expressed in a complementation structure isomorphic with quoted speech complements; the action itself is expressed in the main clause.

3) The predicate phrase (VP) of the main clause, which characterizes the action, must be equivalent to the predicate phrase (VP) in the complement clause, which characterizes the mental representation. In other words, the action must be in accordance with the represented plan of action.

4) The subject of the complement and main verbs must be coreferential. In short, one can only intend with respect to one's own behavior and the direct attribution of intentional action is subject to the evidential and logophoric constraints.

5.0 CONCLUSION.

In conclusion, the distribution of SET1/SET2 inflection in Newari suggests a construal of intentional action consisting of a self-initiated movement in accordance with a plan or mental representation. By linking the force dynamic and representational domains with a set of lexical and discourse-pragmatic principles, we can characterize both the conceptual structure of intentional action, and how it may be attributed to individuals in situated interaction.

NOTES

REFERENCES

