Acquisition Data and Phonological Theory: The Case of Spanish Stress
Author(s): Judith Hochberg

Please see “How to cite” in the online sidebar for full citation information.

Please contact BLS regarding any further use of this work. BLS retains copyright for both print and screen forms of the publication. BLS may be contacted via http://linguistics.berkeley.edu/bls/.

The Annual Proceedings of the Berkeley Linguistics Society is published online via eLanguage, the Linguistic Society of America's digital publishing platform.
ACQUISITION DATA AND PHONOLOGICAL THEORY:
THE CASE OF SPANISH STRESS

Judith G. Hochberg
University of Chicago

The goal of this paper is to use data from an experiment in language acquisition to evaluate three theories of Spanish stress. I hope to show that acquisition data can be of use, not only in judging between theories, but in pointing out new directions for future theorizing to take.

The paper is organized as follows. I will first outline some basic facts of Spanish stress, describe the similarities and differences between three theories proposed to account for them, and discuss why one might want to use language acquisition data to help choose among them. Next, I will show how my experimental data favor one theory -- Harris' metrical account -- over the other two. Finally, I will discuss how some additional aspects of the acquisition data highlight facts of Spanish that are unaccounted for under any current analysis.

Spanish Stress

Stress on Spanish non-verbs is neither rigidly phonologically conditioned, nor entirely free. Stress can be found on any of the last three syllables of a word, regardless of the final segment of the word, as shown in Table 1.

<table>
<thead>
<tr>
<th>Possible stress placements in Spanish</th>
</tr>
</thead>
<tbody>
<tr>
<td>stress</td>
</tr>
<tr>
<td>final</td>
</tr>
<tr>
<td>penultimate</td>
</tr>
<tr>
<td>ante-</td>
</tr>
<tr>
<td>penultimate</td>
</tr>
</tbody>
</table>

Of these six possible placements, two are dominant in frequency: final stress on consonant-final words, and penultimate stress on vowel-final words. These two types account for around 90% of Spanish non-verb tokens, at least in written text (Hooper & Terrell 1976: 67).
Theories of Spanish stress

The three theories to be considered here are Whit ley’s Distinctive Stress Approach (1976), Hooper and Terrell’s natural generative phonology analysis (1976), and Harris’ metrical analysis (1983). I will first describe their main stress rules, and how they handle exceptions to these rules, and then describe which stress patterns they each prohibit.

Whitley’s main stress rule stresses the penultimate syllable of a word, thus yielding correct stress on words like cuchára and azúcar. All other words must have a [+stress] diacritic on their stressed syllable to avoid receiving penultimate stress. In many cases, the [+stress] marking is underlying. However, redundancy rules supply [+stress] on certain large classes of exceptions: final-stressed consonant-final words formed with derivational suffixes (e.g., libertád ‘liberty’, solá ‘solar’), and antepenultimate-stressed, vowel-final words formed with the suffixes -ico/a and -ulo/a (e.g. química ‘chemistry’, círculo ‘circle’) or with Greco-Latin formatives such as -logo and -metro (e.g., prólogo ‘prologue’, kilómetro ‘kilometer’).

Hooper and Terrell’s main stress rule assigns stress to the final syllable of the stem. For most vowel-final words, the final vowel is outside the stem, as shown by its loss in derivation (e.g., cuchára ‘spoon’, cucharita ‘little spoon’). Thus the rule yields the two dominant stress categories of penultimate stress on vowel-final words and final stress on consonant-final words, as shown in (1) and (2) (where ‘]’ indicates the rightmost stem boundary):

1) cuchára
2) tenedór]

For final-stressed, vowel-final words like mamá, Hooper and Terrell make use of the observation that the final vowel is part of the stem, as shown by its retention in derivation: cf. mamá v. the diminutive mamacita. Application of the stem-final stress rule thus yields final stress on words of this type, as in (3):

3)mamá]

Finally, for words like azúcar and teléfono, a lexical diacritic ‘X’ on the stem-final syllable shifts stress one syllable leftward:

4) azúcar] X
5) teléfono
 X

Harris' main stress rule has two parts: a foot formation rule which builds left-dominant, quantity-sensitive binary feet from right to left, and a tree-formation rule which builds a right-dominant word tree. Like Hooper and Terrell's main stress rule, this yields the two dominant categories of penultimate stress on vowel-final words and (because of quantity sensitivity) final stress on consonant-final words:

6) cuchara
 / \ / \ / \\
 rhyme------- foot------- word-------
 \ \ \ \ \ \ \ \\
 s w w s w s

7) tenedor
 / \ / \ / \\
 rhyme------- foot------- word-------
 \ \ \ \ \ \ \\

Again like Hooper and Terrell, Harris' treatment of mamá-type words depends on the fact that the final vowel is inside the derivational stem. His Strong Foot Rule stipulates that such a vowel be labeled strong, yielding derivations such as (8):

8) mamá
 / \ / \ / \\
 rhyme------ foot------ word------
 \ \ \ \ \ \\
 s w s w s

Finally, and again like Hooper and Terrell, Harris uses lexical marking to assign stress to azúcar and teléfono types. The lexical marking he uses is extrametricality, which causes stress to be 'blind' to a particular segment, as in (9) and (10) (where a slash indicates an extrametrical segment):
Thus far we have seen that the three theories differ in what their main stress rules generate as regular, versus what must be marked as exceptional or irregular. In Whitley's treatment, penultimate stress is always regular, and non-penultimate stress always exceptional. In the other two, regularity depends on the final segment of the word: penultimate stress is regular for vowel-final words, and final stress for consonant-final words.

The theories differ further in which stress types are excluded altogether. Whitley's account includes a rule which explicitly limits stress to the last three syllables of a word, thus forbidding words such as the hypothetical *cáticas. Such words are also excluded under Hooper and Terrell's theory, since the \(X \) diacritic moves stress only as far back as the penultimate syllable of the stem:

\[11) *cáticas X \]

For the same reason, this theory (unlike Whitley's) also prohibits antepenultimate stress on consonant-final words where the final consonant is inside the derivational stem; compare the hypothetical and forbidden (12) with the permitted (13):

\[12) *pánaguil X \]

\[13) hipótesis (-is is stem-external; cf. hipotético) X \]

Harris' model likewise excludes *cáticas and *pánaguil types, by virtue of the proposed universal Peripherality Condition: that extrametrical segments must be peripheral in (i.e., at the edge of) their domains. In the case of Spanish, this means that only a stem- or word-final rhyme segment can be extrametrical. *Cáticas or *pánaguil would require two extrametrical segments within the stem, thus violating this condition:
The Peripherality Condition also prohibits a third stress type: antepenultimate stress on words with a branching rhyme in the penult. Again, two extrametrical segments would be needed, as in (16):

16) *cátapana
 \ /
 rhyme-------- s w
 \ /
word

Thus all three theories prohibit cátapana types, all but Whitley's prohibit pánaguil types, and only Harris' prohibits sosenga types.

Motivation for the study

On descriptive grounds alone, Harris' theory seems superior to the other two. Along with Hooper & Terrell's account, it holds the most frequent stress patterns to be regular (penultimate for V# words, final for C# words). In addition, it accounts for more prohibited stress types than do the other two theories.

The purpose of gathering psycholinguistic data, whether from children or from adults, is to ensure that this superiority can be attributed to the speaker as well as to the linguist. To take an extreme view, it may be that the relative freedom of stress placement in Spanish leads speakers not to formulate any stress rules at all. Barring this unlikely but nevertheless possible scenario, speakers of Spanish might, for example, consider sosenga types to be no more irregular than bochaca types, or (as in Whitley's analysis) associate final stress on consonant-final words with specific suffixes. Given the benefit of psycholinguistic data, there is a simple reason why child data on Spanish stress are preferable to adult data: stress is marked in Spanish orthography, and studying pre-literate children avoids the difficulty of eliciting knowledge of phonological as opposed to orthographic rules.
The experiment

In order to access children's knowledge of Spanish stress rules, I had fifty 3-, 4-, and 5-year-old Spanish-speaking children imitate novel Spanish words minimally contrasting in stress placement, the assumption being that regular stress patterns should be easier to imitate. The stimuli consisted of 35 sets of 2, 3, or 4 novel words that were segmentally identical but contrasted in stress placement. These 35 sets were further divided into seven groups of five sets each, based on their length and syllable structure. As shown in Table 2, four of these groups tested regular/irregular contrasts on two- and three-syllable consonant- and vowel-final words. The remaining three contrasted the three possible, prohibited stress types (cátapana, pánaguil, and sosenga) with segmentally identical words with regular or irregular stress.

Table 2
Stimulus groups for the imitation experiment

1) 5 CVCV pairs
 e.g., gagá, gagá

2) 5 CVCVY triplets
 e.g., bóchaca, bocháca, bochacá

3) 5 CVCVC pairs
 e.g., guífor, guifór

4) 5 CVCVCVC pairs
 e.g., cabádon, cabadón

5) 5 CVCVCVCV quadruplets
 e.g., cátapana, cátapána, catapána, catapana

6) 5 CVCVCCV triplets
 e.g., sosenga, sosénga, sosenga

7) 5 CVCVCYC triplets
 e.g., pánaguil, panáguil, panaguil

These novel words were presented in random order, and the children were asked to imitate them. The ease of imitation for each type (e.g., CVCV) was measured according to the number of structure-changing errors made. This included deletion or addition of segments or syllables, stress shift, or metathesis: any error that did more than alter an individual segment.
Evaluating the theories

The results of the experiment, as shown in Table 3, support Harris' theory over the other two. Let us first consider the regular/irregular contrasts. Recall that Whitley's main stress rule yields penultimate stress on all words as the regular case, whereas Hooper & Terrell's and Harris' yield penultimate stress on V# words, and final stress on C# words. The data show that as the latter two theories would predict, on vowel-final words children had the least difficulty with penultimate-stress, while for consonant-final words, final stress was easiest. In addition, whereas Whitley's use of redundancy rules implies that the difficulty of imitating guifor and bochaca types should vary with the phonetic characteristics of individual words, there were no word effects in the data. Thus Whitley's account, as opposed to Hooper & Terrell's and Harris', fails to account for the data so far.

Table 3
Percent error on imitations

<table>
<thead>
<tr>
<th>type</th>
<th>stress</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>666#</td>
<td>66#</td>
</tr>
<tr>
<td>CVCV</td>
<td>666#</td>
<td>66#</td>
</tr>
<tr>
<td>(gaga)</td>
<td>7</td>
<td>23</td>
</tr>
<tr>
<td>CVCVCV</td>
<td>77</td>
<td>42</td>
</tr>
<tr>
<td>(bochaca)</td>
<td>56</td>
<td>33</td>
</tr>
<tr>
<td>CVVCVCV</td>
<td>56</td>
<td>33</td>
</tr>
<tr>
<td>(sosenga)</td>
<td>37</td>
<td>18</td>
</tr>
<tr>
<td>CVCVCVC</td>
<td>37</td>
<td>18</td>
</tr>
<tr>
<td>(cabadon)</td>
<td>52</td>
<td>22</td>
</tr>
<tr>
<td>CVVCVCV</td>
<td>52</td>
<td>22</td>
</tr>
<tr>
<td>(panagul)</td>
<td>34</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>20</td>
</tr>
</tbody>
</table>

The data regarding the possible prohibited types catapana, panaquil, and sosenga allow us to further distinguish between Hooper & Terrell's and Harris' accounts. Recall that the former prohibits only catapana and panaquil types, while the latter prohibits all three. In fact, children found all three harder to imitate than comparable irregulars. They made more errors on catapana types than on catapana types (though not more than on catapana types, a point I shall return
to below). And they made more errors on both panaguil (closed final) and sosenga (closed penult) types than on bochaca (open final and penult) types. Thus Harris’ theory, unlike Hooper and Terrell’s, makes accurate predictions for prohibited-type words, as well as for regulars versus irregulars.

Further facts for future theorizing

The distinctions between regular, irregular, and prohibited stress account for most, but not all, of the error patterns in the children’s data. The most dramatic additional fact to emerge from the data is the unexpected difficulty that children encountered in imitating long, vowel-final words with final stress. Final-stressed bochaca and catapana types were harder to imitate than the corresponding irregular, antepenultimate-stressed bochaca and catapana types. And sosenga and catapana types were just as hard to imitate as the corresponding prohibited sosenga and catapana types.

The difficulty posed by long final-stressed V# words is especially striking when contrasted with the relative ease of imitation of long penultimate-stressed V# types. While children made more errors on catapana types than on bochaca types, and more on bochaca types than on gaga types, their scores on catapana, bochaca, and gaga types were statistically indistinguishable.

This distinction is particularly interesting because it jibes with a hitherto unnoticed fact of Spanish: long V# types are few and obscure. Whitley, in his extensive list of V# words, gives only six that are four syllables long. Of these, only one is common: israelí ‘Isreali’. Of the remaining examples, one is borrowed and the others obscure: Misisipi, arracacha ‘kind of plant’, caracara ‘native American hawk-like bird’, maravedí ‘old Spanish coin’, and zalamele ‘flattery’ (Whitley 1976: 318). At the other end of the scale, two-syllable V# words are both numerous and commonly used: they include agua ‘water’, agua ‘here’, allí ‘there’, bebé ‘baby’, cafe ‘coffee’, champú ‘shampoo’, mamá ‘Mommy’, papa ‘Daddy’, menú ‘menu’, Perú, and rubí ‘ruby’.

Two difficulties arise when considering how this observation might be incorporated into future theoretical accounts of Spanish stress. The first is aesthetic. Ideally, one would like to tie together Spanish speakers’ avoidance of long sequences of unstressed syllables at either the beginning or the end of a word (i.e., catapana or catapana types). However, under current theorizing the two types are unrelated. The badness of the first must be expressed as a restriction
on the possible length of vowel-final stems, while that of the latter falls out as a consequence of the Peripherality Condition.

The second difficulty is more general: there is simply no provision made in any current model for expressing degrees of irregularity. At least for children, categorizing types such as bóchaca and bochaca or gaga and catapaná together as 'irregular' fails to capture the significant difference in speakers' processing of words of the different types. It is beyond the scope of this paper to suggest how degrees of irregularity might be expressed formally, but the data presented here suggest that an attempt would be worthwhile.

1

Research for this paper was supported by Stanford University and by NICHD 5R01 HD 18908; writing was supported by NICHD HDMC 5 T32 HD07307-02 HLB. I am grateful to Eve Clark, Charles Ferguson, John Goldsmith, Paul Kiparsky, Rachel Mayberry, and Marilyn Vihman for many helpful criticisms and discussions. I am greatly indebted to the staff and students of the following Redwood City schools for their participation in my research: the Fair Oaks School, the Fair Oaks Children's Center, the Franklin's Children's Center, and the Peninsula Youth Center.

2

I will restrict the discussion to non-verbs (nouns, adjectives, adverbs, prepositions, and function words). Stress on verbs is morphologically governed, and is generally considered independently (see e.g. Harris 1983).

3

Since there were few developmental differences in the data, Table 3 combines data from all three age groups.

4

One might ask whether children's greater difficulty with sosenga and panaguil types (as opposed to bóchaca types) might be due to a general effect of the closed penultimate or final syllable, as opposed to an effect specific to antepenultimate-stressed words. As Table 3 shows, panaguil types were not in general harder than bóchaca types, because the final consonant changed the basic regularity versus irregularity of the word. (Regular) panaguil types were easier than (irregular) bóchaca types, while (irregular) panaguil types were harder than (regular) bóchaca types. In contrast, sosenga types were harder than bóchaca types regardless of stress placement. Crucially, though, the difficulty posed by the closed penultimate was greater for antepe-
nullimate-stressed words than for penultimate- or final-stressed words.

