Morphologically Motivated Prosodic and Metrical Structures
Author(s): Eun-Sook Kim

Please see “How to cite” in the online sidebar for full citation information.

Please contact BLS regarding any further use of this work. BLS retains copyright for both print and screen forms of the publication. BLS may be contacted via http://linguistics.berkeley.edu/bls/.

The Annual Proceedings of the Berkeley Linguistics Society is published online via eLanguage, the Linguistic Society of America's digital publishing platform.
Morphologically Motivated Prosodic and Metrical Structures

EUN-SOOK KIM
University of British Columbia

0. Introduction
In Nuu-chah-nulth some suffixes trigger alternation in stem vowels in length. There are three kinds of vowel alternation: vowel lengthening, vowel shortening and vowel alternation occurring with reduplication. In this paper, I provide a unified system to a superficially complex array of these apparently separate processes under Optimality Theory (McCarthy & Prince 1993, Prince & Smolensky 1993).¹

1. Vowel lengthening
Some suffixes trigger lengthening of a stem-initial vowel. There are two patterns in this process: i) with some suffixes, if the second syllable of the stem is long, then it is shortened, and ii) with some other suffixes, only the first syllable of the stem is affected. In both cases, the second syllable does not have to be part of a root morpheme. In the case that the triggering suffix itself occupies the second syllable, the vowel of the suffix is not affected. (1) summarises the observation.

(1) Patterns of Nuu-chah-nulth vowel lengthening

<table>
<thead>
<tr>
<th>Type</th>
<th>Triggering suffixes</th>
<th>Root/stem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1st syllable</td>
</tr>
<tr>
<td>Type I</td>
<td>-(q)iih, -hwaa, -iik, -inhi</td>
<td>Lengthened</td>
</tr>
<tr>
<td></td>
<td>-pa(a), -pičh</td>
<td></td>
</tr>
<tr>
<td>Type II</td>
<td>-inakuu, -awi, -panac</td>
<td>Lengthened</td>
</tr>
</tbody>
</table>

¹ Nuu-chah-nulth, along with Ditidaht and Makah, constitutes the Southern Wakashan branch of the Wakashan language family. It is spoken along the west coast of Vancouver Island in B.C., Canada. The data in this paper are from Ahousaht, one of the 12 dialects.

* I would like to thank my language consultants Mary Jane Dick, Sarah Webster, and Katie Fraser for sharing their language with me and for their enthusiasm and patience. I am also grateful to Marion Caldecott, Doug Pulleyblank, Pat Shaw, and Joe Stermerger for their insightful suggestions and corrections. This research is supported by the Jacobs Research Fund, and the Phillips Fund for Native American Research awarded to the author, and Hampton Research Grant awarded to Henry Davis.
Consider the following examples. -(q)iître ‘to make’ is a Type I case. The first syllable of the stem is lengthened, while as seen in (2b), if the second syllable is underlyingly long, it is shortened on the surface.

(2) -(q)iître ‘to make’
 a. č/a-pac-iître
 canoe-to make
 ➔ č[aa]paciiître
 ‘making a canoe’
 b. s/a/pn/i/-qiître
 bread-to make’
 ➔ s[aa]pn[i]qiître
 ‘making bread’

(3) is one of type II cases. The first syllable of the stem is lengthened; the second syllable, as seen in (3b), is not affected unlike type I.

(3) -panaj ‘moving around’
 a. ʔ/a-ya-panač
 many-moving around
 ➔ ʔ[aa]yapanač
 ‘Many people moving around’
 b. n/a/qč/uu/-panač
 drunk-moving around
 ➔ n[aa]qč[uu]panač
 ‘(s.o.) moving around drunk (from place to place)’

2. Vowel shortening
Some suffixes cause the syllable(s) of a root or stem to shorten, which is the opposite of the lengthening process shown above.

(4) a. t/uu/ʔukʷ-(q)aq-mit-siš ➔ t[u]ʔukʷaqitsiš
 scared-very-PAST-1sg/IND
 ‘I was very scared.’
 b. č/i/q/aa/-qaq ➔ č[i]q[a]qaqʔiš naʔaat
 a spiritual song-very
 ‘S/he is singing a spiritual song very loudly.

3. Vowel alternation with reduplication
Some suffixes trigger reduplication and sometimes the stem vowels are modified. There are 9 patterns in Nuu-chah-nulth reduplication in terms of the forms of both the reduplicant and the base. I provide 4 patterns in (5), which exhibit vowel alternation in the base (see Kim in prep. for the full discussion).

2 The suffix initial /q/ disappears on the surface, when it follows a consonant-final stem.
3 Abbreviations used in this paper are: DUR=durative, IND=indicative, INT=interrogative NEG=negative, RED=reduplicant, sg=singular, pl=plural.
(5) Patterns of Nuu-chah-nulth reduplication

<table>
<thead>
<tr>
<th>TYPE</th>
<th>Vowel length in</th>
<th>RED-BASE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reduplicant</td>
<td>Base</td>
</tr>
<tr>
<td>Class IV</td>
<td>Long</td>
<td>Affected; lengthened, if underlyingly short</td>
</tr>
<tr>
<td>Class V</td>
<td>Short</td>
<td>Affected; shortened, if underlyingly long</td>
</tr>
<tr>
<td>Class VI</td>
<td>Long</td>
<td>Affected; shortened, if underlyingly long</td>
</tr>
<tr>
<td>Class VII</td>
<td>Short</td>
<td>Affected; lengthened, if underlyingly short</td>
</tr>
</tbody>
</table>

3.1. **Class IV: Red= σμ; Base= iσμ**
The reduplicant vowel is always long, and the base (or the first syllable of the base, if it consists of more than one syllable) is also long. If the vowel of the base is short, then it is lengthened as shown in (6).

(6) a. ḻwāwāasaqaʔiš
 RED- ḻwasaq-(y)a-ʔiš
 RED-to cough-continuously-3sg/IND
 ‘She is continuously coughing.’

 b. cuuccuucuʔiš
 RED-cuc-(y)a-ʔiš
 RED-to scratch-continuously-3sg/IND
 ‘S/he is continuously scratching.’

3.2. **Class V: Red= σμ; Base= iσμ**
The reduplicant has a short vowel and (the first syllable of) the base is also short. If the vowel of the base is long, then it is shortened as shown in (7).

(7) a. ḻuʔusumkukʔiš
 RED- ḻusum-kukʷ-ʔiš
 RED-to need/want-to resemble-3sg/IND
 ‘S/he appears to need (s.t.)’

 b. ḻiixʷakuk
 RED- ḻiixʷ-(a)-kukʷ
 RED-to smile/laugh-DUR-to resemble
 ‘Smirk’

3.3. **Class VI: Red= σμμ; Base= iσμ**
The reduplicant is always long, but (the first syllable of) the base is short. If
the vowel of the base is long, then it is shortened as shown in (8).

(8) a. wiiwikity'ak
 RED-wik-it'yak
 RED-NEG-afraid/fear
 ‘Not afraid of anything’

 b. siisicity'aksiś
 RED-siic-ity'ak-siś
 RED-maggot-afraid/fear
 ‘I am afraid of maggots.’

3.4. Class VII: Red=σμ; Base=ισμμ

 The process is exactly opposite to Class VI reduplication: the reduplicant is always short, but if (the first syllable of) the base is underlyingly short, then it is lengthened as shown in (9).

(9) a. ṭuuušsapi'idiś
 RED-ṭuuš-sapi-?iś
 RED-some-to depend on-3sg/IND
 ‘S/he is depending on someone.’

 b. ṭaʔaqisapihsuu waaʔak mituuni
 RED-ʔaqi-sapi-ʔsuu waʔ-ak mituuni
 RED-what-to depend-2pl/INT to go-DUR Victoria
 ‘What are you depending on to go to Victoria?’

4. Analysis

 We have seen so far that vowel alternation in Nuu-chah-nulth exhibits complex properties both phonologically and morphologically. I summarise the questions these data raise as follows:

 1. How do we treat the different patterns of vowel alternations?
 2. How do we treat the modification of base forms in terms of vowel length?
 3. Is there any way of dealing with these processes under a unified system?
 4. How do we integrate morphological aspects of the processes with phonology?

 In the following sections, I will discuss these problems.

4.1. Metrical requirements

 Modification of root/stem vowel length is due to metrical conditions specified for each vowel lengthening, shortening, and reduplication-triggering suffix. Adapting Pulleyblank to appear, I propose that metrical requirements are defined as templates as seen in (10) (cf. Crowhurst 1991, Hayes 1994).\(^4\)

\(^4\) See Kim (in prep.) for detailed discussion for Nuu-chah-nulth foot structure.
Morphologically Motivated Prosodic and Metrical Structures

(10) I. Trochaic foot
 a. FootForm₁: two light syllables \((\sigma \quad \sigma)_{\phi}\)
 \[
 \begin{array}{c}
 \mu \\
 \end{array}
 \begin{array}{c}
 \mu
 \end{array}
 \]
 b. FootForm₂: two moras \((\sigma)_{\phi}\)
 \[
 \begin{array}{c}
 \mu \\
 \mu
 \end{array}
 \]
 c. FootForm₃: two syllables with one heavy \((\sigma \quad \sigma)_{\phi}\)
 \[
 \begin{array}{c}
 \mu \\
 \mu \\
 \mu \mu \\
 \mu
 \end{array}
 \]
 d. FootForm₄: two heavy syllables \((\sigma \quad \sigma)_{\phi}\)
 \[
 \begin{array}{c}
 \mu \\
 \mu \\
 \mu \\
 \mu \\
 \mu
 \end{array}
 \]

II. Iambic foot
 e. FootForm₅: two syllables with first light: \((\sigma \quad \sigma)_{\phi}\)
 \[
 \begin{array}{c}
 \mu
 \end{array}
 \]
 f. F(oot)F(orm)₆: two moras: \((\sigma)_{\phi}\)
 \[
 \begin{array}{c}
 \mu \\
 \mu
 \end{array}
 \]
 g. FootForm₇: two syllables with first light; second heavy: \((\sigma \quad \sigma)_{\phi}\)
 \[
 \begin{array}{c}
 \mu \\
 \mu \\
 \mu \mu \\
 \mu
 \end{array}
 \]

Each template is specified for specific suffixes and their surface effects are realized by the following constraints, (11), and their language-specific ranking, (12).

(11) Constraints:
 a. FootForm₆: A foot must obey the prosodic requirement specified on suffixes, if any. (δ indicates morphological domains: each class of suffixes.)
 b. MAXₘ: Moras in the input must have a correspondent in the output.
 c. DEPₘ: Moras in the output must have a correspondent in the input.

(12) Ranking:
FootForm₆ >> MAXₘ, DEPₘ
The implication of the ranking is that observing the metrical requirements is more crucial than maintaining the quantity of the input vowel.

The effect of the ranking is illustrated by the tableaux below. The first case is vowel lengthening. (13) is an example of Type I lengthening, where a triggering suffix is specified for FootForm III: the first syllable of the foot is long and the second is short.

\[(13) \text{Type I: } \text{FootForm}_{III}: (\sigma \sigma)_\varphi \]
\[\mu \mu \mu\]

(14) is the relevant example and (15) is its tableau.

\[(14) s/a/\text{pn}/i/-qii\dot{t} \rightarrow s[aa]\text{pn}[i]qii\dot{t}\]

'bread-to make'

\[(15) \text{Tableau for (14)}\]

<table>
<thead>
<tr>
<th>sapnii-qii\dot{t} (FFIII)</th>
<th>FootForm_III</th>
<th>MAXIO_\mu</th>
<th>DEPIO_\mu</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (saapni)_\varphi qii\dot{t}</td>
<td></td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>b. (sapnii)_\varphi qii\dot{t}</td>
<td></td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>c. (sapni)_\varphi qii\dot{t}</td>
<td></td>
<td>*!</td>
<td>*</td>
</tr>
</tbody>
</table>

(16) is a case of Type II lengthening, where the first syllable of the stem is long, but the second is not affected.

\[(16) \text{Type II: } \text{FootForm}_{II}: (\sigma)\varphi \]
\[\mu \mu\]

\[(17) n/a/qi/uu/-panaj \rightarrow n[aa]qij[uu]panaj \]

'drunk-moving around'

‘(s.o.) moving around drunk’

\[(18) \text{Tableau for (17)}\]

<table>
<thead>
<tr>
<th>naq'euu-pana'c (FFII)</th>
<th>FootForm_II</th>
<th>MAXIO_\mu</th>
<th>DEPIO_\mu</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (naaq)_\varphi 'cuupa'nac</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>b. (naaq'euu)_\varphi pana'c</td>
<td></td>
<td>*!</td>
<td>*</td>
</tr>
<tr>
<td>c. (naq'eu)_\varphi pana'c</td>
<td></td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>d. (naq'euu)_\varphi pana'c</td>
<td></td>
<td>*!</td>
<td></td>
</tr>
</tbody>
</table>

260
(19) is a case of vowel shortening, where the first two syllables of the stem are shortened. (20) and (21) are the relevant example and tableau, respectively.

(19) FootForm₁: \((\sigma \ \sigma)_{\mu} \)
| | μ μ |

(20) \(t\text{uu}/\text{ḥuk}^{\text{waq}}-\text{(q)aq-mit-siš} \rightarrow t[u]\text{ḥuk}^{\text{waqitsiš}}\)
scared-very-PAST-1sg/IND ‘I was very scared.’

(21) Tableau for (20)

<table>
<thead>
<tr>
<th>tuḥuk(^{waq})aq(FFI)</th>
<th>FootForm₁</th>
<th>MAXIOμ</th>
<th>DEPIOμ</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (tuḥu)(_{\mu})k(^{waq})</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. (tuḥu)(_{\mu})k(^{waq})</td>
<td>*!</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>c. (tuḥuu)(_{\mu})k(^{waq})</td>
<td>*!</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>d. (tuḥuu)(_{\mu})k(^{waq})</td>
<td>*!</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

4.2. Prosodic characterization of reduplicants
In the same spirit, each reduplication-triggering suffix is not only specified for a metrical requirement on the foot structure, but also manifests a prosodic requirement \(\sigma\) as a cooccurring prefix, adapting Marantz 1982, McCarthy & Prince 1986, Downing 2000, 2001, Pulleyblank to appear, and following Kim to appear. For example, a suffix of class IV, -\text{ya}, could be represented in the lexicon as follows.

(22) \(\sigma\ldots\text{ya}\)

4.3. Indexation of faithfulness constraints
Adopting Itô & Mester (1999), I propose that phonological as well as morphological domain-specified faithfulness constraints are closely related to the modification of the base forms of some classes. That is, the following faithfulness constraints are domain-specified both phonologically and morphologically.

(23) Input-Output faithfulness: \(\delta\)=phonological or morphological
a. MAXIO\(_{\delta}\): Every segment of the input in the domain of \(\delta\) has a correspondent in the output.

b. DEPIO\(_{\delta}\): Every element in the output in the domain of \(\delta\) has a correspondent in the input.
Segments are never deleted or inserted, so MAXIO/DEPIO(seg) are undominated. However, length alternation is suffix-dependant, leading to the following ranking:

(24) a. Classes IV & VII: FootForm \gg DEPIO(μ)$_{IV,VII}$
 b. Classes V & VI: FootForm \gg MAXIO(μ)$_{V,VI}$

We need FaithBR constraints to obtain the effect of the Base-Reduplicant identity.

(25) Base-Reduplicant Faithfulness: δ=all classes (McCarthy & Prince 1994, 1995)
 a. MAXBR$_{\delta}$: Every element of the base in the domain δ of has a correspondent in the reduplicant.
 b. DEPBR$_{\delta}$: Every element of the reduplicant in the domain of δ has a correspondent in the base.

The coda of the base is copied depending on the triggering suffixes and the following markedness constraint plays a crucial role in determining the form of the reduplicant.

(26) Markedness
 NOCODA: Syllables may not have codas.

(27) is the portion of the Nuu-chah-nulth grammar relevant for the particular processes under discussion:

(27) MAX/DEPIO(SEG), MAX/DEPIO(μ)$_{I-III}$ MAXIO(μ)$_{IV,VII}$, DEPIO(μ)$_{V,VI}$

\[\Downarrow \]

FootForm$_{\delta}$

\[\Downarrow \]

MAXIO(μ)$_{V,VI}$, DEPIO(μ)$_{IV,VII}$

\[\Downarrow \]

MAX/DEPBR$_{[I-1,IV,VII-1]}$

\[\Downarrow \]

NOCODA

\[\Downarrow \]

MAX/DEPBR$_{[I-2,II,III,V,VII,VI,II]}$

The implication of the ranking is illustrated in tableaux as follows, with the relevant examples.

(28) Class IV suffixes- FootForm$_{IV}$: $(\sigma \quad \sigma)_0$

\[\mu \mu \mu \mu \]

262
(29) cuuccucaʔiš
RED-cuc-(y)a-ʔiš
RED-to scratch-continuously-3sg/IND
’S/he is continuously scratching.’

(30) Tableau for (29)

<table>
<thead>
<tr>
<th>/Rσ-cuc-(y)a(FFIV)/</th>
<th>MAXIO IV</th>
<th>Foot Form IV</th>
<th>DEPIOμ IV</th>
<th>MAXBR</th>
<th>DepBR</th>
<th>NO CODA</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. {σ[cuuc]cuu}øca</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. {σ[cuc]cuu}øca</td>
<td>*!</td>
<td>*</td>
<td>*(μ)</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. {σ[cuc]cuu}øca</td>
<td>*!</td>
<td>*(μ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. {σ[cuuc]cuu}øca</td>
<td>*!</td>
<td>*(μ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. {σ[cuu]cuu}øca</td>
<td>*</td>
<td>*</td>
<td>*(seg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. {σ[cuu]cuu}øya</td>
<td>*(seg)</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

With FootFormIV outranking DEPIOμ, the base vowel is lengthened on the surface (and the reduplicant has a long vowel).

(31) Class V suffixes-FFI: (σ σ)φ
| | | |
| | μ | μ |

(32) xiix*akuk
RED-xiix"-(a)-kuk
RED-to smile/laugh-DUR-to resemble
‘Smirk’

(33) Tableau

<table>
<thead>
<tr>
<th>/Rσ-xiix...kuk(FFI)</th>
<th>MAXIO [Seg.]v</th>
<th>Foot Form I</th>
<th>MAXIO μv</th>
<th>NO CODA</th>
<th>MAXBR</th>
<th>DepBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. {σ[ξi]ξi}φx*a</td>
<td>*</td>
<td>*</td>
<td>*(seg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. {σ[ξi]ξi}φx*a</td>
<td>*!</td>
<td>*</td>
<td>*(seg)</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. {σ[ξi]ξi}φx*a</td>
<td>*!</td>
<td>*</td>
<td>*(seg)</td>
<td>*(μ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. {σ[xiix]ξi}φxa</td>
<td>*</td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. {σ[ξi]ξi}φa</td>
<td>*!</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. {σ[ξi]ξi}φx*a</td>
<td>*!</td>
<td>*</td>
<td>*(seg)</td>
<td>*(μ)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

263
With FootForm$_3$ outranking MAXIO$_\mu$, the base vowel is shortened on the surface (and the reduplicant has a short vowel).

(34) Class VI suffixes-FFIII: $(\sigma \quad \sigma)_\varphi$

\[
\begin{array}{c}
\sigma \\
\mu \\
\mu \\
\end{array}
\]

(35) siisicit'yaksiş
 RED-siic-it'yak-siış
 RED-maggot-afraid/fear
 'I am afraid of maggots.'

(36) Tableau for (35)

<table>
<thead>
<tr>
<th>/Rσ-siic-it'yak(FFIII)</th>
<th>MAXIO [Seg.]$_{\text{VI}}$</th>
<th>Foot Form III</th>
<th>MAXIO μ_{VI}</th>
<th>NO CODA</th>
<th>MAXBR VI</th>
<th>DEPBR VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. {σ[sii]si}φci</td>
<td>*</td>
<td></td>
<td>*(seg)</td>
<td>*(\µ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. {σ[sii]sii}φci</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. {σ[sii]sii}φci</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. {σ[sic]sii}φci</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. {σ[sii]si}φci</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>*(\µ)</td>
</tr>
<tr>
<td>f. {σ[sii]sii}φci</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>*(\µ)</td>
</tr>
<tr>
<td>g. {σ[sic]sii}φci</td>
<td>*</td>
<td>*</td>
<td>*(seg)</td>
<td>*(\µ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h. {σ[sic]sii}φci</td>
<td></td>
<td>*</td>
<td>*(seg)</td>
<td>*(\µ)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

With FootForm$_{\text{III}}$ outranking MAXIO$_\mu$, the base vowel is shortened on the surface (and the reduplicant has a long vowel).

(37) Class VII suffixes-FFVII: $(\sigma \quad \sigma)$\varphi

\[
\begin{array}{c}
\sigma \\
\mu \\
\mu \\
\end{array}
\]

(38) hichačińuk
 RED-hic-ńuk
 RED-feces-on the hand
 'Feces on the hand'

264
(39) Tableau for (38)

<table>
<thead>
<tr>
<th></th>
<th>MAXIO VII</th>
<th>Foot Form VII</th>
<th>DEPIO μ_{VII}</th>
<th>MAXBR DEPBR VII</th>
<th>NO CODA</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. ${\sigma[hiic]hiic}_p$</td>
<td>*</td>
<td>*(\mu)</td>
<td></td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>b. ${\sigma[hiii]hiic}_p$</td>
<td>*!</td>
<td>*(seg)</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>c. ${\sigma[hi]hiic}_p$</td>
<td>*!</td>
<td>*(seg)</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>d. ${\sigma[hiic]hiic}_p$</td>
<td>*!</td>
<td></td>
<td></td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>e. ${\sigma[hiii]hi}_p$</td>
<td>*(seg)</td>
<td></td>
<td></td>
<td>*(\mu)</td>
<td></td>
</tr>
<tr>
<td>f. ${\sigma[hiii]hi}_p$</td>
<td>*(seg)</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>g. ${\sigma[hi]hiic}_p$</td>
<td>*</td>
<td>*(seg)</td>
<td></td>
<td>*(\mu)</td>
<td></td>
</tr>
<tr>
<td>h. ${\sigma[hiii]hiic}_p$</td>
<td>*!</td>
<td>*(seg)</td>
<td>*(\mu)</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

With FootForm$_{VII}$ outranking DEPIOμ, the base vowel is lengthened on the surface (and the reduplicant has a short vowel).

5. Conclusion

Nuu-chah-nulth prosodic and metrical structures are morphologically determined. Vowel alternations motivated by vowel lengthening, shortening, and reduplication-triggering suffixes are due to metrical requirements specified for the suffixes. Moreover, multiple patterns of reduplication and modification of the base forms are due to such metrical requirements. Nuu-chah-nulth reduplication results from prosodic requirements specified for suffixes. In addition, Nuu-chah-nulth vowel alternations provide a case where faithfulness constraints can be both phonologically and morphologically domain-specified. This study provides a unified approach to a superficially complex array of apparently separate processes.

References

Eun-Sook Kim
Buchanan E-270, 1866 Main Mall
Department of Linguistics
University of British Columbia
Vancouver, B.C.
Canada V6T 1Z1

eunsookk@interchange.ubc.ca