1. Basic Data and Previous Analysis: Intuitively, a speaker who utters a sentence with the Korean reportative evidential \(–tay\) conveys (with a high degree of required faithfulness to original meaning) the information expressed by the corresponding non-evidential sentence. Scenario 1: John asks Mary what the weather will be like tomorrow. Mary heard from a weather report that it is going to snow. Mary says to John:

(1) nwun-i o-lkes-i -lay
 snow-NOM come-FUT-COP-RPT
 It’s going to snow (I heard).

Although in many cases, the speaker of a \(–tay\) sentence believes the information that he or she is conveying, at least to some degree (as in the scenario in (1)), it is not necessary that the speaker have any belief whatsoever regarding that information.

(2) pi-ka o-ass -tay-nuntey pi-ka o-ci anh-ass-ta.2
 rain-NOM come-PFCT -RPT-CONJ ra in-NOM come-ADN not-PFCT-DECL
 It rained (I heard), but it didn’t rain.

In (2), the proposition corresponding to \(It \text{ rained}\) is expressed a \(–tay\) sentence which is conjoined with a sentence with propositional content \(It \text{ did not rain}\). A speaker may felicitously utter (2) under any circumstance, provided that he or she heard that it rained, and believed that it did not.

Previous formal analyses of \(-tay\) (K-s Chung 2005\(^3\), J-y Chung 2009) are built on the notion of PRESENTative force, proposed in Faller (2002).\(^4\) According to these PRESENT-based accounts, there are two core aspects to the meaning of \(-tay\) sentences. Given a \(-tay\) sentence with propositional content \(p\), a felicitous utterance of that sentence requires that the speaker have the appropriate evidential commitment for \(p\), and has the result of PRESENTing \(p\).

(3) (Illocutionary) force: \(\text{PRESENT}(p)\)
(4) Evidential commitment: \(\exists x \cdot [\text{Assert}(x, p) \land x \not\in \{s, h\}]\)

In (3), a PRESENTative speech act (with PRESENTative illocutionary force) is one in which the speaker simply provides some information (expressed in the utterance) for consideration to the hearer(s) (Faller 2002). PRESENT contrasts with ASSERT: ASSERTion involves making a claim about the way the world is, and requires the speaker to believe the expressed proposition, while PRESENTation involves no (explicit) claims nor (explicit) indication of belief. The evidential commitment in (4) is, in words: there exists someone, other than the current speaker or hearer, who asserted the (reported) proposition.\(^5\)

\(^1\) -lay is an allomorph of \(-tay\) which appears following the copula \(i-\).

\(^2\) Some speakers find this example to be somewhat degraded. These speakers prefer \(-ta\) instead of \(-tay\), as in \(pi-ka \ o-ass-ta-nuntey \ pi-ka \ o-ci \ anh-ass-ta\). The interpretation appears to be identical.

\(^3\) Note that in K-s Chung’s work, the discussion of Korean reportative evidentials makes use of examples containing not \(-tay\), but rather, \(–tanta\). K-s Chung assumes that \(-tay\) and \(-tanta\) are stylistic variants (K-s Chung 2005:190), an assumption that I make in this paper as well.

\(^4\) Here, I discuss the proposals in terms of Faller’s original framework of speech-act theory (which is based on the speech act logic in Vanderveken 1990), simply noting that the basic ideas are adaptable to a variety of (formal) approaches.

\(^5\) K-s Chung (2005) has a different evidential commitment, but this is to provide a unified analysis of the non-assertiveness of both what K-s Chung refers to as the \(\text{spatio-deictic tense}\) marker \(-te\) (known more commonly as the \(\text{retrospective mood}\) marker) and the reportative evidential. Were it not for this need, K-s Chung would adopt the evidential commitment indicated in (4) (see K-s Chung 2005:208).
2. Problems for the existing analysis: (3) and (4) together predict that a speaker should be able to felicitously utter \(p \)-\(tay \) \(\sim p \)-\(tay \). This is not the case. Consider the following scenario: Scenario 2: John asks Mary who won the 2010 World Series. Mary has heard conflicting information. She has heard from one person that the Giants won, and heard from a different person that the Rangers won. Assume that \(p \) is The Giants won the W.S. and \(q \) is The Rangers won the W.S.\(^6\) The evidential commitments of \(p \)-\(tay \) and \(q \)-\(tay \) are met. These are given in (5):

\[
(5) \begin{align*}
& a. \text{There exists a speaker (other than the current speaker and hearer) who asserted } p. \\
& b. \text{There exists a speaker (other than the current speaker and hearer) who asserted } q.
\end{align*}
\]

Given (5), Mary should be able to say (8) but in fact (8) is infelicitous.

\[
(8) \#\text{Giants-ka iky-ess } -\text{tay. (kulentey) Rangers-ka iky-ess } -\text{tay.} \\
\text{Giants-NOM win-PFCT } -\text{RPT. (however) Rangers-NOM win-PFCT } -\text{RPT.}
\]

Intent: The Giants won (I heard from someone), but the Rangers won (I heard from someone else).

A clue as to why (8) is infelicitous comes from the observation that \(-tay \) sentences are sensitive to information which disambiguates the source of the reported information. This information may be non-linguistic, or linguistic. Imagine this slightly-modified-from-above World Series scenario. Scenario 3: Mary and John are having a conversation about things that Bob has said, when John asks whether Bob knows who won the World series. Mary has heard Bob say that the Giants won. Mary says:

\[
(9) \text{(eung,) Giants-ka iky-ess } -\text{tay.} \\
\text{(Yes,) Giants-NOM win-PFCT } -\text{RPT}
\]

\[
\text{(Yes,) the Giants won (I hear).}
\]

In scenario 3, the context makes it clear to John that the source of the information reported by Mary is Bob. Disambiguation can be done linguistically, as well.

\[
(10) \text{Bob-i kureh-nuntey, nayil pi-ka o-lke } -\text{lay.} \\
\text{Bob-NOM that.do-CONJ, tomorrow rain-NOM come-FUT } -\text{RPT}
\]

\[
\text{Bob is (saying that), it is going to rain tomorrow (I hear).}
\]

Going back to the original World Series scenario, scenario 2, observe that (11) below is a perfectly felicitous variant of (8).

\[
(11) \text{Giants-ka iky-ess } -\text{tay.} \\
\text{Giants-NOM win-PFCT } -\text{RPT.}
\]

\[
\text{... (kulentey), talun-salam-i kureh-nuntey, Rangers-ka iky-ess } -\text{tay.} \\
\text{... (however), other-person-NOM that.do-CONJ, Rangers-NOM win-PFCT } -\text{RPT.}
\]

\[
\text{The Giants won, I heard, but someone else is (saying that), the Rangers won (I hear).}
\]

In (11) the second \(-tay \) sentence must be interpreted with respect to the source indicated in the disambiguating adjunct phrase.\(^7\) In other words, \(-tay \) is being used \textit{anaphorically}.

\(^6\)Obviously, it is assumed that only one team can win.

\(^7\)Note that adding the adjunct clause does not result in a verb-complement construction, despite what the gloss may suggest. In Korean, the verb-complement construction is Speaker – Sentence+COMP – Verb, illustrated below. (also see Sohn 1994).

\[
(\text{i}) \text{John-i [pi-ka o-n-ta } -\text{ko] malha-n-ta} \\
\text{John-NOM rain-NOM come-IMPF-DECL } -\text{COMP say-IMPF-DECL}
\]

\[
\text{John says [that it rains]}.
\]
3. Analysis: I assume that this anaphoric use is basic. Given this, the intuition is that (8) is infelicitous because it must be interpreted as attribution of conflicting propositions to a particular (contextually- or linguistically-determined) individual.

The proposal is a modification of J-y Chung (2009), which is built upon Portner (2006), which is itself built upon the ideas about the common ground presented in, e.g., Stalnaker (1974). The common ground is the set of propositions which represent the shared public beliefs of participants in a conversation. As Portner (2006) observes, one can consider the common ground to be a subset of the set of propositions which conversation participants are aware of, but do not necessarily have any beliefs about. This latter set is the presented set.

The theoretical assumptions of the proposal are given next:

Discourse structure: For any language L, Let ds be a discourse structure, ps be a set of propositions, and F, J, tuples of selection functions, such that ds = <ps, F, J >.

Presented set: The set ps is the set of propositions corresponding to what the participants in a discourse are mutually aware of.

Classification by force-type Any selection function f which is a member of F corresponds to a cognitively or linguistically real way for speakers L to classify propositions. Assertion might be one way, evidentials might be another. Technically-speaking, any f is a function from sets of propositions to sets of propositions. In a discourse model ds, f(ps) amounts to a subset of ps categorized according to f. Among the various functions in F is the common ground, the propositions which the participants have agreed to believe, represented as cg(ps). Note that this means that any proposition in the common ground is also in the presented set (i.e., any asserted proposition is also presented). Another f relevant here is rpt, which is the reported-proposition function.

Classification by source: The new contribution in this paper is J. Any selection function j which is a member of J corresponds to a conversationally-salient individual individual to whom propositions can be attributed. Functions in J are also from sets of propositions to sets of propositions. For an individual x, x(ps) = { p ∈ ps : the participants of the conversation mutually agree to attribute p to x }. Consistency is generally enforced in these subsets under the assumption that x is rational, although this may be superseded if participants agree otherwise.

Constraints: An assertion of p by x requires that {w : x believes p in w} ∩ cg(ps) ≠ null. Use of −tay to report p requires that {w : ∃p [speaker believes x said p] and x /∈ {s,h}} ∩ cg(ps) ≠ null, i.e. it is presupposed that there is some proposition which p heard from x.

Updating a discourse: Adding a proposition to a discourse involves a basic conversational move which is referred to as PUT, which is a function from a discourse model and a proposition to a discourse models. In the simplest kind of PUT, the subsets (F-type or J-type) remain unchanged.

\[
\text{PUT}(ds, p) = ds', \quad \text{where}
\]

(i) \[d's' = \langle ps', F', J' \rangle, \quad \text{ii) } ps' = ps \cup \{p\}, \]

(iii) \[F' = F \text{ in which every member } f \text{ of } F \text{ is replaced with } f', \quad \text{and} \]

\[\text{dom}(f') = \{ ps \cup \{p\} \}, \quad \text{and } f'(ps \cup \{p\}) = j(ps) \]

(iv) \[J' = J \text{ in which every member } j \text{ of } J \text{ is replaced with } j', \quad \text{and} \]

\[\text{dom}(j') = \{ ps \cup \{p\} \}, \quad \text{and } j'(ps \cup \{p\}) = j(ps) \]

Various ways of categorizing propositions correspond to different varieties of PUT. For any f, there is a variety of PUT which is PUTf. Crucially, any f-update involves a j-update.

8 During the LSA 2011 talk, I assumed an unconditional consistency requirement, participants in the conversation may consider a particular individual to be irrational, in which case −tay sentences with conflicting content could be used to highlight that individual’s irrationality. Thank you to an anonymous member of the LSA 2011 audience for pointing this out.

9 The analysis in this paper has been greatly streamlined from that presented at the talk.
For any discourse structure $ds = <p, F, J>$ and f which is a component of F and j which is a component of J, PUT$_f(ds, p) = ds'$ works as follows: Let α' be the discourse component of ds' corresponding to α in ds. Then, ds' is the minimal expansion of ds such that all of the following are satisfied:

(i) $p \in ps'$
(ii) for all selection functions g which are components of F', $\text{dom}(g) = \{ps'\}$
(iii) for all selection functions i which are components of J', $\text{dom}(i) = \{ps'\}$
(iv) $p \in f'(ps')$, and (iv) $p \in j'(ps')$
(v) Any other constraints on discourse structures are satisfied.

Given the above, the meaning of $–tay$ can be given as an update function, (14). $–ta$ is also provided, for comparison, in (15).

(14) $[[-tay]] = \lambda p \lambda ds . \text{PUT}_{rpt}(ds, p)$
(15) $[[-tay]] = \lambda p \lambda ds . \text{PUT}_{f}(ds, p)$

How it works: The net result of all of this can be seen looking at the infelicitous example (8), repeated below. Let $p = \text{The Giants won}$, $q = \text{The Rangers won}$. Assume x represents the source of p, y the source q.

(8) #Giants-ka icky-ess -tay_1 (kulentey) Rangers-ka icky-ess -tay_1
Giants-NOM win-PFCT -RPT. (however) Rangers-NOM win-PFCT RPT.

Intended: (I hear that) the G.’s won. (However), (I hear that) the R.’s won.

p is added to ds, which results in a minimal expansion to ds', in which $p \in ps'$. In this case, both sentences are reportative. For the first sentence: $p \in \text{rpt}'(ps')$ and $p \in \text{x}'(ps')$, plus any additional constraints. For the second, the source must also be x, by the co-indexing I’ve assumed. Thus, $\neg p$ is added to ds', which minimally expands to ds''. $\neg p \in ps''$, $\neg p \in \text{rpt''}(ps'')$ and $\neg p \in \text{x''}(ps'')$. Since consistency is enforced in J sets, the x set is inconsistent. This accounts for the unacceptable.

4. Conclusion: This paper set out to provide an account of the Korean reportative evidential $–tay$ which can account for data which pose an empirical problem for existing accounts. The big motivation came from the fact that $p-tay \neg p-tay$ is infelicitous, contrary to existing accounts. Data from contextually- and linguistically-methods of disambiguation led to an assumption that $–tay$ is always anaphoric. Based on this, I developed an update-style semantics in propositions are classified according to source. In conjunction with assumptions about consistency, I showed that this proposal handles the data which were problematic for existing accounts.

References

