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Abstract. Current research on computational modeling of codeswitching has focused 

on the use of syntactic constraints as model predictors (Li & Fung 2014; Li & Vu 

2019). However, proposed syntactic constraints (Poplack 1978; Poplack 1980; 

Myers-Scotton 1993; Belazi et al. 1994) are largely based around Spanish-English 

codeswitching, and are violated repeatedly (and potentially systematically) by 

codeswitching involving other languages. Thus, a computational model trained on 

these syntactic constraints, when applied to codeswitching involving languages that 

are not Spanish-English, may not capture the naturalistic patterns of those languages 

in codeswitching contexts. This paper demonstrates the value of sociolinguistic 

factors as predictors in training a Classification and Regression Tree (CART) model 

on novel Mandarin-English codeswitch data, which come from 12 bilingual speakers 

of two different generations from Grand Rapids, Michigan. Participants also 

answered metalinguistic questions about their own language practices and attitudes 

and completed a written Language History Questionnaire (LHQ) (Li et al. 2020), 

which asked for self-evaluations of language habits (proficiency, immersion, and 

dominance in the two languages). LHQ responses were then quantified into 

numerical scores serving as sociolinguistic predictors in the CART model. The 

model, which highlighted that age, L2 Dominance, and L1 Immersion were among 

the top predictors, achieved an accuracy of 0.804 with the area under its ROC curve 

being 0.692. This is comparable to, if not more powerful than, previous 

computational studies (e.g. Li & Fung 2014) that trained models using only proposed 

syntactic constraints as predictors. This paper shows the importance of 

sociolinguistic factors in computational research previously focused on syntactic 

constraints; the intersection of these methodologies could improve a cross-linguistic 

and computational understanding of codeswitching patterns. 
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1. Introduction. As language and technology become more and more intertwined, it is

imperative that any techno-logical advances address the complex sociolinguistic reality of many

communities. One example of this sociolinguistic complexity is codeswitching. The

sociolinguistic and syntactic factors that influence codeswitching help to deepen our

understanding of not only linguistic identity, but also language habits—and by extension,

language technology.
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The goal of this paper is to explore the language technologies of multilingual speech and 

train a Classification and Regression Tree (CART) model on codeswitched Mandarin-English 

speech, using features that are sociolinguistic in nature during model training to show the 

importance of considering sociolinguistic factors in computational linguistic research. A 

companion paper (Yi n.d.) explores two connected questions that were part of the larger research 

project this current paper is contextualized within: 1) investigating nuanced differences in 

linguistic identities and language attitudes of Chinese American bilingual speakers based on 

sociolinguistic factors (e.g. age, education level, language immersion, etc.), and 2) comparing 

newly collected codeswitched data against previously proposed syntactic constraints on 

codeswitching. 

Previous literature on codeswitching language technologies, and multilingual language 

technologies at large, is still in its pioneering stages. The research that does exist on 

codeswitching language technologies are more limited in scope to the syntactic constraints 

proposed by linguists who have sought to understand codeswitching from a syntactic typology 

perspective. However, contemporary sociolinguists have found that processes of codeswitching 

are not only difficult to categorize syntactically, but also dependent on sociolinguistic nuances of 

identity, presentation, audience design, and topic of conversation. Prior studies in computational 

linguistics often trained linguistic models with proposed syntactic constraints in mind to generate 

what would be deemed a “grammatical” codeswitched sentence, whereas this paper trains the 

model on what has been uttered by Mandarin-English bilinguals in conversation. This kind of 

model with naturalistic data, viewed under the lens of sociolinguistic influences and not trained 

using the syntactic constraints that have been proposed in the literature, is a novel contribution to 

a more holistic and nuanced understanding of language habits, identity, and technology. 

2. Background. Many different types of computational models have been developed and used

for language processing—specifically for intra-sentential and even intra-word codeswitching. For

this paper, I will be looking primarily at intra-sentential CS, rather than intra-word CS, though

there are a handful of instances of the latter in my data as well. I will briefly describe a portion of

tasks that have been completed by computational models already, and locate the gap of

sociolinguistically-aware technology that the current paper attempts to fill.

Computational models have ventured into syntactic and semantic representations of CS, 

though, to the author’s knowledge, there are no publicly available tools for multilingual POS 

tagging or multilingual vector spaces (for semantic analysis). Such models look at the syntactic 

constraints proposed by linguists and model or generate CS data based on the constraints. 

Bullock et al. (2018) look into the discourse surrounding the validity of the previously discussed 

Matrix Language Framework (MLF) (Myers-Scotton 1993), specifically as it relates to NLP 

tasks. Bullock et al. (2018) use several of the indexes mentioned in Khanuja et al. (2020) (e.g. M-

index) against several codeswitched corpora, running a logistic regression model to identify the 

presence of a Matrix Language (ML). While the model was able to accurately predict the

presence of a ML over half the time, Bullock et al. (2018) wrote that there was not much

significant information regarding the patterns of the ML versus the Embedded Language (EL)

that could be extracted from the results of the model.

Li and Fung (2014) use a weighted finite state transducer (WFST) framework to handle 

codeswitching recognition and parsing from a Functional Head Constraint (FHC) structure. By 

training a model with respect to a proposed systematic syntactic constraint, Li and Fung (2014) 

circumvent the problem of not having enough CS data to effectively train models on. They pose 

this approach as a way of combining bilingual data with a given syntactic (and thus, more 
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predictable) structure. To do this, Li and Fung (2014) first expand the WFST’s search network 

using a translation model; then, they restrict the parsing to only the permissible paths under FHC. 

Lattice parsing (enabling sequential coupling) and partial parsing (for tight coupling between 

parsing and filtering) were both tested and compared. While Li and Fung’s (2014) WFST under 

FHC is more robust because it successfully avoids making early, erroneous decisions on CS 

boundaries, it is only able to do so because of the restriction of FHC. As mentioned, FHC does 

not allow CS to happen between a functional head and its complement, which is a constraint that 

often gets violated in my data. Using FHC on their model, Li and Fung (2014) were able to 

achieve a precision, recall, and F-score of 0.68, 0.71, and 0.70, respectively. My model 

(described in a later section) yields comparable results with sociolinguistic factors as predictors, 

rather than FHC. 

The gap here, then, is that there are no non-syntactic and non-constraint-based models of 

CS. There is no research into how computationally modeling sociolinguistic features (like age, 

education level, language attitudes, L1/L2 proficiency, language habits, level of balanced 

bilingualism, etc.) affect CS. Thus, this paper will take these sociolinguistic factors into account, 

rather than syntactic ones like POS tags, and make them predictors for my model. 

3. Methods and data. Novel data were collected through sociolinguistic interviews that elicited

Mandarin-English codeswitched speech. These interviews were conducted remotely over Zoom

due to the COVID-19 pandemic, and the procedure was approved by the Institutional Review

Board (IRB) before any of the data collection process began. In order to elicit codeswitched 
speech, each interview included the same list of questions that were themselves asked using 
codeswitching between Mandarin and English. Zoom calls were recorded with participants’ 
consent, as well as IRB approval.

       Data were collected from a total of 12 participants, six of whom were in the older age 

category (>= 45 years old), and six of whom were in the younger one (20-30 years old). This line 

dividing the age group was drawn to correlate with their immigration generation. The six 

participants in the older age group all immigrated to the US as adults, while the six participants in 

the younger age group were born in the US as children of immigrants. All twelve participants are 

bilingual in Mandarin and English, and they are all familiar with the practice of codeswitching. 

Most participants did not know the name “codeswitching” for this process; rather, they called it 

“Chinglish.” All participants were part of the Chinese Association of West Michigan (CAWM), 

located in Grand Rapids, Michigan. CAWM is a cultural organization that provides a community 

to the Chinese population of Grand Rapids and West Michigan as a whole. CAWM provides 

many cultural services, including food festivals, holiday celebrations, and the Grand Rapids 

Chinese Language School (a weekend language school). 

        Each person participated in their own Zoom call interview, making a total of 12 recorded 

interviews of codeswitched speech. The total speech time transcribed was 4 hours, 39 minutes, 

and 12 seconds.  

3.1. DATA PREPROCESSING AND FEATURE SELECTION. Because the raw data (i.e. the first stage of 

manual transcriptions where everything said was transcribed) is messy and hard to work with for 

analysis, all transcriptions went through data cleaning and preprocessing in Python before being 

analyzed with models. All hesitation words (e.g. “like”/“um” in English or “那个”/“什么的” in 
Mandarin) were removed. Additionally, all English text was converted to lowercase, and all 

punctuation was removed. In the case of an English contraction, the apostrophe was removed and 

the contraction was converted to its full form (i.e. "I'm" would be "i am" in the clean data, with 
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the contraction expanded and letters in lowercase). Finally, text was tokenized into sentences 

separated by line breaks.  

       In addition to the content and transcriptions from the Zoom calls, each participant filled out 

a copy of the Language History Questionnaire 3.0 (LHQ 3.0) from Li et al. (2020). The LHQ is 

a tool used by linguists in generating a self-reported record of language proficiencies and habits 

of participants. This survey is built based on the most common questions historically asked by 

researchers to participants in studies that have to do with language and linguistics, and the 

quantified scores from LHQ survey responses are described below. 

3.2. PROFICIENCY. The LHQ prompts participants to rate their proficiency levels for reading, 

listening, writing, and speaking on a scale from 1-7. For language i, Proficiency is calculated 

with (1) (Li et al. 2020):  

(1) 

      {R, L, W, S} are the scores for the components of reading, listening, writing, and speaking, 

respectively. Pij represents the self-rated proficiency for language i for the jth component, and wj 

are the weights given to each component in the calculation. For my data, I set all components of 

the weights to be equal. LHQ uses the scaling factor of 1/7 to normalize the sum to be a value 

between 0 and 1 (since the scores are rated on a 7-point Likert scale). 0 represents the 

lowest level of proficiency, and 1 represents native level proficiency. Proficiency, then, is the 

sum of the weights multiplied by the proficiency ratings for each component, scaled with a 

factor of 1/7. While proficiency level could be argued to reflect a cognitive influence rather 

than a sociolinguistic one, I included self-rated proficiency as a feature that could potentially 

influence the presence or absence of codeswitching in my model because one’s self perception 

of their fluency can reflect the comfort level they have with this language, as well as a speaker’s 

attitudes towards their own language habits. Redinger (2010) found differences in the language 

and codeswitching choices of students who were trilingual in French, German, and 

Luxembourgish based on their self-perceived proficiencies as well as their schools’ testing 

analyses of their proficiencies. Students who had higher self-rated proficiencies or school-

tested proficiencies in a language tended to feel more comfortable codeswitching using that 

language (usually with another language they had high self-rated proficiencies in) (Redinger 

2010). Additionally, self-rated proficiency is a reflection of one’s own linguistic identity (i.e. 

how fluent they think they are in a language can affect how they construct their identity 

through code choices (Dweik & Qawar 2015)). With my data, I expect a higher proficiency to 

correlate with a higher level of usage in the respective language. Thus, if both languages are 

rated at similar high proficiencies, I would expect a higher likelihood of codeswitching. 

3.3. IMMERSION. Immersion plays a large role in the language use and habits of speakers, so it is 

a natural sociolinguistic factor to include. Immersion can lead to higher self-rated proficiency in 

a language (Li et al. 2020), and thus more potential codeswitching between two languages that 

they are fluent in. LHQ uses the survey answers of age, age of acquisition (AoA), and years of 

use (YoU) of language i to calculate the Immersion score with (2) (Li et al. 2020): 

(2)
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       Age is the speaker’s current age in years, age of acquisition is the speaker’s age when they 

started using language i in component  j (i.e. speaking, reading, writing, or listening), and years 

of use represents the total number of years using language i in any component. Again, wj is the 

weight of the given component, and a scaling factor of 1/2 is used to normalize the value to be 

between 0 and 1, as well as to give AoA and YoU equal weight. As with proficiency, I would 

expect that languages rated at similar immersion scores would correspond to an increased 

likelihood of codeswitching in my data.  

3.4. DOMINANCE. Li et al. (2020) show that language dominance is related to a speaker’s 

proficiency and daily use of a language, making it a reasonable sociolinguistic factor to include 

as a potential predictor in a speaker’s language patterns. LHQ asks speakers for the number of 

hours per day they spend on different components of each language (e.g. how many hours one 

uses Mandarin for reading the news). Dominance for language i is calculated using (3) (Li et al. 

2020):  

(3) 

H i,j represents the hours per day a speaker spends using language i on component j, and K 
is a constant scaling factor that LHQ writers have set to 16. The other variables shown have been 

used in the previous equations, and they represent the same scores. The additional scaling factor 

of 1/2 is also included here to normalize the dominance value to be between 0 and 1, as well as 

give proficiency and usage hours equal weight. Because each individual speaker can assess their 

own hours of usage differently from other speakers, LHQ uses another score, the L2 to L1 ratio, 

to give each speaker an individualized and contextualized dominance score against their other 

language, rather than comparing across speakers. I will give my predictions of the effect of 

dominance scores on codeswitching below, after introducing the L2 to L1 ratio.  

3.5. L2 TO L1 DOMINANCE RATIO. LHQ provides a simple dominance ratio of L2 to L1 (or, in 

cases where more than two languages are measured by LHQ, the ratio of language i to L1). Li et 

al. (2020) compare this ratio to z-scores used in statistics in that it provides a more standardized 

comparison of language dominance across speakers. That is, by contextualizing the dominance 

of each language by individual speakers within their own set of languages, it is easier and more 

reliable to compare across multiple speakers.  

       This ratio is also used to determine if a speaker possesses “balanced” bilingualism 

(Treffers-Daller 2017), or if one language is clearly dominant over the other. The ratio is 

calculated using the straightforward (4) (Li et al. 2020), where L1 and L2 dominance scores are 

shown by DominanceL1 and DominanceL2, respectively: 

(4) 

       Because a ratio of 1.0 would indicate similar dominance levels between L1 and L2, I would 

expect that speakers whose L2 to L1 dominance ratio is closer to 1 would codeswitch more 

frequently.  

3.6. MULTILINGUAL DIVERSITY SCORE. The latest version of LHQ also included the calculation 

of a Multilingual Diversity Score (MLD), which takes into account all the languages that are 

represented in each speaker’s survey results (i.e. not just the answers for a speaker’s L1 and L2). 

The MLD is the name that LHQ uses for a measure called the Shannon Entropy (here marked by 
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the variable H, distinct from Hi,j used in the Dominance Score calculation), as proposed by 

Gullifer and Titone (2019). The Shannon Entropy (H) measures the social diversity of language 

use—that is, whether a speaker’s language habits (i.e. hours of daily usage, domains of usage, 

etc.) reflect a Compartmentalized Fashion (CF) or Integrated Fashion (IF) of bilingualism. 

Gullifer and Titione (2019) define CF as bilingualism in which speakers codeswitch at the most 

minimal amount possible because they view their languages as distinctly separate and reserved 

for different domains of use. IF is bilingualism that manifests in an abundance of codeswitching 

due to the speaker viewing the languages as integrated within the same domains of use—or 

viewing both languages (often showing up in codeswitches) as acceptable for use with certain 

audiences. A higher Shannon Entropy H or MLD (as LHQ calls it) shows that a speaker’s 

language habits lean more towards IF than CF. H is calculated using (5) and (6) (Li et al. 2020), 

with (5) being the calculation of a temporary variable that is used in the final calculation of H (or 

MLD):  

(5) 

       PDi represents the Proportion of Dominance of language i, where n is the total number of 

languages a participant has learned or uses. PDi is used in (6): 

(6) 

       H will result in a value between 0 and 2, where a score of 1 shows maximum balanced 

bilingualism as defined by Gullifer and Titone (2019). A score closer to 0 or 2 will represent a 

speaker’s habits leaning towards one language or the other. For example, for H to be a score 

of exactly 1 (a “balanced bilingual”), the equation would have to look like (7) (Gullifer & 

Titone 2019) as follows, where PDi is 0.5: 

(7) 𝐻 = −(0.5 ∗ log20.5 + 0.5 ∗ log20.5) 

= −[0.5 ∗ (−1) + 0.5 ∗ (−1)] 

= 1  

       I included the MLD in my analysis because it quantifies what integrated (i.e. balanced) 

bilingualism compared to compartmentalized bilingualism looks like based on self reported 

scores of proficiency, immersion, and dominance. It takes into account many sociolinguistic 

influences like domain and method of language use (in components j of a given language), 

frequency of use in hours and dominance ratios across languages, and self-rated scores reflecting 

one’s linguistic identity and language attitudes. By tracing each calculation in the MLD equation 

back to the equation for Proficiency (1), MLD reflects the most aggregate measure of a 

speaker’s language use. Because of this, this score is an exceptionally informative quantification 

of a speaker’s tendency to integrate their languages by using codeswitching. Therefore, I expect 

MLD scores closer to 1 to correlate with a higher likelihood of codeswitching, while MLD 

scores close to 0 or 2 to correlate with the opposite.  

3.7. AGE AND EDUCATION LEVEL. Age and education level were also collected with the LHQ 

survey. Age is given straightforwardly as a number, while education level is given with one of 

the three labels: College (Bachelor’s Degree), Graduate School (Master’s Degree), or Graduate 

School (Doctoral Degree). I encoded the three levels of education as a one-hot vector (with 
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dimensions 1 x 3) as follows: [Bachelor’s Degree, Master’s Degree, Doctoral Degree]. Someone 

with just an undergraduate college education would be encoded as [1, 0, 0], whereas someone 

with a master’s degree would be [0, 1, 0] and someone with a doctorate would be [0, 0, 1].  

In the portion of the Zoom calls where participants were asked metalinguistic questions, 

many expressed that codeswitching, to them, is unacademic and unprofessional. This could be 

because of the misconception discussed in Poplack (1980) that codeswitching is a sign that 

someone is not proficient or fully bilingual in one or more of their languages (i.e. CS is used to 

fill gaps rather than be a language habit of someone who has strong cognitive access to both 

languages). Thus, I include the factor of education level to see if this affects codeswitching. I 

hypothesize participants who hold a Bachelor’s Degree to codeswitch more frequently than 

participants who hold a Master’s Degree or Doctoral Degree. Everyone in the older age group 

holds some Graduate School degree, whereas only one participant in the younger age group 

holds a Graduate School degree (Master’s). Because participant age and education level is split 

almost on the same line, there could potentially be confounding between the two variables. 

3.8. SENTENCE LENGTH. While sentence length is not a sociolinguistic variable, it can influence 

the presence or absence of a codeswitch in a sentence simply by the virtue of longer sentences 

having more possible instances of a CS occurrence. For the task of measuring sentence length, I 

used Stanza (Qi et al. 2020), a collection of natural language processing (NLP) tools created and 

made publicly available by Stanford University’s NLP researchers. Stanza contains Python tools 

for Mandarin tokenization of words and English tokenization of words. Using a series of small 

preprocessing tasks that allowed me to count the number of Mandarin words, count the number 

of English words, and then add them together, I found the sentence length for each sentence in 

my data. I predict that a longer sentence will be correlated with a higher frequency of 

codeswitches. 

3.9. FINDING THE PRESENCE OF A CODESWITCH IN A SENTENCE-LEVEL TOKEN. Finally, the variable 

being predicted is the presence or absence of a codeswitch in a sentence. For this, I made a 

simple tool (described below) in Python to go through each sentence and see if the sentence 

contained both an instance of Chinese characters and an instance of English letters. If at least one 

instance of each was found, that sentence would be assigned the binary value of ‘1.’ If a 

codeswitch was not found, the sentence would be assigned a value of ‘0.’  

       The predictors I included in the models in this paper were the following: sentence length, 

age, education level, L1 proficiency score, L2 proficiency score, L1 immersion score, L2 

immersion score, L1 dominance score, L2 dominance score, L2 to L1 dominance ratio, and 

multilingual diversity score. These predictors were all used in my final model as features to 

predict the presence or absence of a codeswitch in a sentence. Education level was the only 

categorical variable, and I used one-hot encoding to capture education level in a vector of three 

indices ([Bachelor’s Degree, Master’s Degree, Doctoral Degree]).  

4. Results. A total of 12 participants’ Zoom interviews were transcribed, which amounted to 
slightly more than four hours of speech. There were 1340 sentences transcribed in the final

(cleaned) dataset. Out of the 1340 sentences, 309 contained at least one instance of CS. 640 
sentences were spoken by the older age group and 700 were from the younger age group. There 
were a total of 16,285 words, 7064 of which were English words and 9221 of which were in 
Chinese. Of the 9221 Chinese words, 7082 were spoken by the older age group and 2139 were 
spoken by the younger generation. Of the 7064 English words, 1045 were uttered by the older 
generation and 6019 came from the younger generation.
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4.1. LANGUAGE IDENTIFICATION. I created my own simple deterministic LID tool using UTF-8 

from Unicode and the Regular Expressions Python package to detect whether or not a string 

contains Chinese characters, English orthography, or both (i.e. a codeswitch). Because English 

and Mandarin use different orthography, this tool performed with 100% accuracy on my data 

(evaluated by manually checking the tool’s LID on my text). While we should, in theory, expect 

that there is 100% accuracy all the time, potential roadblocks include Chinese characters that are 

not yet in UTF-8. In my data, punctuation was removed during data preprocessing, but if this 

tool is run on data that does not have punctuation removed with languages that use different 

punctuation symbols (as is the case with Mandarin using different commas and a different period 

from English), the accuracy could decrease as well.  

       LID is an important task needed for other tasks such as identifying a sentence that contains a 

codeswitch or counting the number of codeswitches in a sentence, and thus was included in 

analyzing the data that was inputted into the final model.  

5. Model. CA CART models predict a dependent variable based on a handful of input variables. 
In my case, these input variables are the 11 predictors I outlined in my methodology: age, 
education level, L1 proficiency score, L2 proficiency score, L1 immersion score, L2 immersion 
score, L1 dominance score, L2 dominance score, L2 to L1 dominance ratio, and multilingual 
diversity score. Each token in this model is a sentence, so there are a total of 1340 tokens. I 
performed this analysis using R, drawing inspiration from the models and theory in Fedorova

(2021). The algorithm behind a CART model is a series of questions, where the answers of one 
sequence of questions will determine what, if any, should be the next question(s). After 
processing, a tree is generated where the nodes are the answers to the questions that were 
significant. The higher up an answer or question shows up on the tree, the more important the 
question or answer was.

       The evaluation metrics used in this section are accuracy and the receiver operating 

characteristic (ROC) curve. Because 309 of the 1340 sentences in the dataset contain at least one 

instance of a codeswitch, there is an inherent class imbalance in the data. Specifically, the smaller 

class (sentences containing CS) makes up .23 of the data, while the larger, non-CS class makes 

up .77 of the data. Because of this, the evaluation metric of accuracy can be misleading as it can 

be a mere reflection of how well the model learns class imbalances. If a model predicted that a 

sentence did not contain CS 100% of the time, it would still result in an accuracy of .77. Thus, 

when looking at the accuracy score of the models described in this section, the value of the 

accuracy is compared against the value of the larger class, which is .77. This means that many 

seemingly high accuracy scores are actually not reflective of the class imbalances of the data, and 

therefore not the most ideal representation of a model’s predictive power.  

       Fortunately, the ROC curve and its corresponding area under the curve (AUC) is a much 

better evaluation metric for datasets with class imbalances. The AUC of the ROC measures how 

well a model can distinguish true positives as true positives and true negatives as true negatives, 

thus helping test against false positive values, even despite inherent class imbalances. When 

looking at this evaluation metric, the value of the ROC curve (i.e. the AUC of the ROC) is 

compared against the value of random chance, or .50. A high ROC curve value, then, is actually 

representative of a model’s high predictive power. Because of this, the ROC curve is a much 

better evaluation metric for my models and dataset. In the models discussed in this section, both 

accuracy and the ROC curve will be mentioned. 

5.1. LOGISTIC REGRESSION. I first performed a logistic regression on my data. Each token was a 

sentence, and I partitioned 1070 of 1340 (about 80%) total sentences to be in the training set. The 
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rest of the data was my test set. The accuracy of the simple logistic regression model was .652, 

and the AUC of the ROC curve was .689, which shows that my regression model performed 

better than if the model had learned only the class imbalances and predicted based on those 

(which meant the model performed better than the equivalent of random chance based on false 

positives). It is important to note that the accuracy of this model is lower than even the class 

imbalance value of .77, implying that the patterns in my data may not be linear. Since a simple 

logistic regression model is linear, it did not capture the trends in the dataset as well as the other 

models described below. 

5.2. CART MODEL. Because of the large number of sociolinguistic predictors in my data, the 

algorithm of a CART model (explained above) provides a clear visual representation of which 

predictors are the most important. In the process of determining which predictors were most 

important to include in the CART model, I tested the inclusion and exclusion of predictors until 

the final model was developed and run. Of the 11 predictors, sentence length is the only non-

sociolinguistic predictor (i.e. it is more of a syntactic predictor), so each of the other individual 

(sociolinguistic) predictors were isolated from each other to be tested alongside the predictor of 

sentence length. Sentence length was the constant predictor throughout all of these test runs. The 

results (accuracy and ROC) are shown in Table 1 below. As mentioned above, the ROC is more 

representative of a model’s true predictive power than the accuracy. The seemingly high 

accuracy scores of some predictors is misleading for this reason. In other words, the values in the 

column “AUC of the ROC” were helpful in finding the predictors that ended up appearing as 

important nodes (with predictive power) in the final CART model.  

Predictor Accuracy AUC of the ROC 

Age 0.841 0.732 

Education (encoded 

as one-hot vector) 0.792 0.574 

L1 Proficiency 0.833 0.706 

L2 Proficiency 0.852 0.755 

L1 Immersion 0.830 0.746 

L2 Immersion 0.829 0.704 

L1 Dominance 0.826 0.691 

L2 Dominance 0.844 0.756 

L2 to L1 Dominance Ratio 0.796 0.608 

Multilingual Diversity Score 0.837 0.693 

Table 1. Accuracy and ROC of individual predictors 

        The predictors that ultimately showed up as visible nodes in the CART model are bolded in 

Table 1, though it is worth noting that L2 Proficiency also showed a high AUC of the ROC 

when tested individually as a predictor. The reason L2 Proficiency did not show up in the final 

visualization of the CART model (discussed below) may be due to predictor interaction when all 

the predictors were included together in the final model. However, L2 Proficiency being a 

strong predictor in CS habits is in line with the findings of Redinger (2010) (as mentioned in an 

earlier section). 
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       When performing the final CART analysis on the data, the model used the same 11 

predictors as in the logistic regression. The same partitioning of training and testing data was 

also used. The final CART model performed with an accuracy of 0.804 and an AUC for the 

ROC of .692. Both of these measures were improvements from the logistic regression model, 

indicating that the nonlinear modeling captured the data better (as seen with the accuracy score 

being higher than the class imbalance value of .77), and that the CART model had a higher true 

predictive power with a greater area under the ROC curve.  

        The four features that the CART model highlights as important nodes on the tree were age, 

sentence length, L1 immersion, and L2 dominance. L2 dominance shows up at the very top of 

the tree, followed by sentence length, L1 immersion, age, and then sentence length again. The 

tree generated by my model is show in Figure 1 below: 

Figure 1. CART tree 

       At each node, the model shows what the values of each predictor were when analyzing 

which direction the tree would fall after each step. While the 4 predictors shown in Figure 1 

were the most important predictors, this final model still included all 11 predictors; the rest 

merely did not show up on the tree visualization.  

      To check for potential noise with interaction of the remaining 7 predictors, the model was 

tested using only the 4 predictors (1 syntactic one, 3 sociolinguistic ones) shown in the 

visualization of Figure 1. However, when only the 4 predictors were used, the AUC of the ROC 

decreased from .692 to .655. The accuracy increased from .804 to .807, but as mentioned above, 

accuracy is not as representative of an evaluation metric for predictive power with these models 

and data. These results imply that while the visualization only shows the 4 most important 

predictors, the remaining predictors are also critical to the predictive power of the model and 

cannot be removed in a truly holistic view of sociolinguistic factors that affect CS.

       To further confirm if the predictors my CART model generated as important were 

actually significant, I used the sjPlot package downloaded into RStudio to look at the effects of 
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each individual predictor shown on this tree on CS predictions. The four graphs are shown in 

Figure 2 below:  

Figure 2. sjPlot generations of predictors 

       As the graphs show, an increase in sentence length leads to a higher percentage of 

codeswitching. The trend line in the sentence length graph is gradual. The line in the graph 

modeling age shows a decrease in codeswitching frequencies with an increase in age. This is in 

line with the chi-square test performed earlier. The L1 immersion and L2 dominance graphs 

show an increase in codeswitching with an increase in score, though the L2 dominance score 

plateaus at around .6 (in L2 dominance score value). These graphs show the logic behind why 

these predictors are strong predictors of codeswitching. Sentence length gives more space for 

potential CS instances to occur (in a longer sentence), correlating with higher rates of CS. For 

age, the previously performed chi-square test showed that younger generation speakers 

codeswitch at a statistically significantly higher frequency than older generation speakers. The 

plot for age generated by sjPlot treats age as a binary factor. L1 immersion and L2 dominance 

both show the high presence of one language or the other in a speaker’s day to day life and 

language use, and it makes sense that they would co-occur as both strong predictors of CS. 

5.3. RANDOM FOREST AND UPSAMPLING. While CART’s visualization of individual predictors is 

helpful, I wanted to confirm these trends in as many ways as possible, so I performed an analysis 

using a Random Forest model as well. Random Forest is a machine learning algorithm that is 

composed of many smaller decision trees. Each small decision tree, or estimator, makes its own 

predictions. While CART is only one tree, Random Forest outputs the mode of all the decision 

trees that make predictions, so the analysis and accuracy is more robust and accounts for some of 

the variance of a single CART model. The Random Forest model used the same 11 predictors as 

the CART model and logistic regression model, as the CART model showed that all 11 

predictors contributed to predictive power. The Random Forest model performed with an 

accuracy of .811, with the AUC for the corresponding ROC curve being .742. However, the 

downfalls of my data include a class imbalance (i.e. .77 of sentences that are non-CS and only 

.23 of sentences that are CS) and a small size for a machine learning algorithm or model. 
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Because of this, many researchers use a process called upsampling, which essentially expands 

the dataset by randomly sampling (with replacement) from the smaller class until both classes are 

equal, to counter class imbalances and have more data to draw from. The original data is 

untouched; additional samples are merely added. This helped the class imbalance issue in my 

data because, as seen above, my data inherently has many more instances of sentences with no 

CS at all than sentences that have the presence of CS. After upsampling, the Random Forest 

model performed with .807 accuracy, with the AUC of the upsampled Random Forest ROC 

curve being .774. Thus, the class imbalance problem was improved in the upsampled Random 

Forest model, as can be seen by the improvement in the area under the ROC curve.  

       A summary of the models described in this section is shown in Table 2 below, where the 

upsampled Random Forest model ultimately performed with the highest AUC of the ROC (.774). 

Thus, the upsampled Random Forest had the largest predictive power. This makes sense, as 

Random Forest itself helps to account for variance in CART, and upsampling combats the class 

imbalance problem even further. However, the CART model provided the best visualization and 

dissection of each predictor in the model. 

Model Accuracy AUC of the ROC 

Logistic Regression 0.652 0.689 

Final CART model with 11 predictors 0.804 0.692 

Random Forest 0.811 0.742 

Random Forest with Upsampling 0.807 0.774 

CART with only 4 predictors 0.807 0.655 

Table 2. Summary of models 

6. Conclusion and discussion. In exploring language technologies, I ran into issues surrounding

the processing of multilingual speech; existing language technologies do not take many

sociolinguistic factors into account, as much of the current research focuses on syntactic

predictions. However, this allowed for my CART model to fill a gap where sociolinguistics was

missing in computational literature. My model looked at 11 predictors, 10 of which were related

to sociolinguistic factors. The four predictors that CART modeled as the most important were

age, sentence length, L1 immersion, and L2 dominance, where codeswitching frequencies

increased with sentence length, L1 immersion scores, and L2 dominance scores. Codeswitching

frequencies decreased with increasing age. 3 out of these 4 CART-generated predictors are

sociolinguistically-related, which shows that this should be an area of greater future research.

The results of my models using sociolinguistic predictors are comparable to the results of

previous work using only syntactic constraints (e.g. Li and Fung 2014) as model predictors. In

the future, sociolinguistic analyses and predictors should be researched to a much greater extent,

especially in conjunction with the already existing syntactic and semantic ways to model

language in computational research. Further, by virtue of developing multilingual models, one

will have to take sociolinguistic and identity factors into account, as multilingualism is

inextricably tied to sociolinguistics and linguistic identity.
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