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Minimal wordlist size for a phonological profile: New evidence from Kra-Dai languages

Kanyarin Boonkongchuen, Rikker Dockum*

Abstract. This study replicates, and extends to Kra-Dai languages, earlier work on
minimal wordlist size needed to make a phonological profile of a language. Previous
work on Australian languages recommended approximately 400 randomly sampled
words to comprise a minimally complete profile in terms of reliably capturing every
phoneme, and with accurate distribution. We survey 55 Kra-Dai languages to show
that a longer minimal list is necessary, which we attribute to typological differences
like larger consonant/vowel inventories. Given the widespread use of short wordlists
in fieldwork, these results hold significance for designing language documentation
surveys as well as projects that use legacy wordlist data.
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1. Introduction. Much language documentation, especially legacy documentation work, takes
the form of surveys of wordlists. These wordlists are often short because they use concepts list
like the Swadesh 100 (Swadesh 1955) or 207 (Swadesh 1952) wordlists. And although linguistics
as a field is moving towards stronger norms of participatory, community-focused documentation,
we still have a large number of limited lexicons available for understudied languages as legacy
data. This can be seen in large databases such as the Automated Similarity Judgement Program
(ASJP) database (Holman et al. 2008; Wichmann et al. 2022) or the Rosetta Project (Good &
Hendryx-Parker 2006). They both include a large number of languages within their databases, but
the wordlist for most languages, especially understudied ones, remains fairly short.

How do we decide whether a wordlist is minimally complete? If we want to be able to use
legacy wordlists as data in new studies, we want them to be a good representation of the language
we are studying. Baird et al. (2022) called this specific problem the ‘Bird-Himmelmann prob-
lem’. This is derived from when Steven Bird in the Resource Network for Linguistic Diversity
mailing list questioned whether any documentation work for an understudied language had met
Himmelmann’s definition for documentation, which was ‘to provide a comprehensive record of
the linguistic practices characteristic of a given speech community.” It has become increasingly
important to quantify this question and judge the completeness of a wordlist because fieldwork
can be an expensive and time-consuming task, and both money and time are finite resources.
However, many studies still rely on data that was collected previously by someone else. This
highlights the value and the importance of designing language documentation tasks to consider
future research applications, and try their best to compile wordlists that meet a definition of min-
imally complete. This helps ensure that any conclusions that are drawn from the data won’t be
undermined by limitations of the initial data. This is also why the idea of quantifying a minimally
complete wordlist is useful and necessary.

One example of why it is desirable to have quality wordlists can be seen in the World Atlas
of Language Structures (WALS, Dryer & Haspelmath 2013). WALS is a database that stores the
different phonological, grammatical, and lexical properties of each language. They draw from
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already published descriptive material such as reference grammars to compile the different lin-
guistic properties that the WALS database keeps track of. This means that they rely on the origi-
nal fieldwork studies to be accurate. WALS is a very useful resource for linguists. Because it has
data from so many languages, for example, it can tell you if a language has a small, average, or
large inventory. This can be very useful information for many linguists and it relies on the ac-
curacy of the initial data so that we can create a fair comparison. Language documentation and
fieldwork play a very important part in linguists” work, so questions such as those posed by the
Bird-Himmelmann problem should be considered seriously.

This paper extends the work done by Dockum & Bowern (2019), which showed that for 36
Australian languages in the Chirila database (Bowern 2016) with lexicons ranging from 2,000 to
10,000 items, approximately 400 randomly sampled words are needed to able to reliably extract
from any given wordlist a minimally complete phonological profile of a language. They defined
a minimally complete phonological profile as a lexicon with (1) full coverage of every phoneme
in that language, and (2) phonemic distribution that is statistically comparable to that of the full
lexicon.

A limitation of Dockum & Bowern (2019) is that only one region of the world was studied,
and many of the languages in the study have a similar typological profile. This study replicates
the findings of their study, expands upon the methodology, and extends the results to languages
in the Kra-Dai language family. One reason that the previous conclusions might not generalize
to all languages is that Australian languages on average have been shown to have a relatively
small phonemic inventory compared with all the world languages even though they exhibit more
variation than is often been assumed (Gasser & Bowern 2013). The World Atlas of Language
Structures (WALS, Dryer & Haspelmath 2013) categorizes the world’s sound systems based on
average numbers of sounds. Australian Aboriginal languages tend to have smaller inventories of
both consonants and vowels. For example, a language such as Garrwa which is reported to have 4
vowels would be categorized by WALS as having a small vowel inventory’. And a language such
as Djabugay which is reported to have 13 consonants would be categorized by WALS as having a
’small consonant inventory’.

Therefore, it was unclear whether the results from Dockum & Bowern (2019) applied more
broadly around the world.

2. Background. Currently, there has not been a large amount of research on minimal wordlists.
But that is slowly changing as our tools for aggregating and comparing data have improved.
However, there is still a limited amount of resources to spend on fieldwork. As previously men-
tioned, there is the Dockum & Bowern (2019) study that this paper is building upon. Similar
work has also been done by Baird et al. (2022) which was briefly mentioned in the introduction
for introducing the idea of the Bird-Himmelmann problem.

Baird et al. (2022) used translations of the story ‘North Wind and the Sun’ in 158 different
languages to investigate at which point every phoneme in that language appears at least once. The
authors themselves described this as a very low bar but were surprised to find that some of the
languages in their study still failed to meet this standard. The text was broken down into tokens
with one phoneme per token, and then they investigated at which token were all of the phonemes
observed. For this study, vowel length was not counted as two separate phonemes and neither
were tones considered. The median number of tokens needed to observe all phonemes was just
over a thousand for both methods that were investigated in the paper. If we conservatively ap-



proximate the number of phonemes per word to be 5, then we would need around 200 words

to find every phoneme at least once. This was only done to provide a brief comparison to the
Dockum & Bowern (2019) paper where the final recommendation was a minimum of 400 words.
The coverage metrics from Dockum & Bowern (2019) and Baird et al. (2022) are the same where
they are looking for at least one instance of every phoneme. The key difference between the two
papers that is relevant for this paper is that the 2019 paper also included an additional metric to
measure faithful phoneme distribution.

One important point of note here is that both of these papers suggest that minimally a wordlist
should be longer than many conventional survey wordlists that currently exist. One of the most
common wordlists is the Swadesh lists or similar regional adaptations (Bowern 2015:39). The
original Swadesh list initially started as the Swadesh-200 list (Swadesh 1952) which was then
later compressed into the Swadesh-100 list (Swadesh 1955). An even shorter version was also
produced by Holman et al. (2008) for the ASJP database with only 40 concepts and will be dis-
cussed further later in the paper. The prevalence of these short wordlists contrasts with the rec-
ommendations given by Baird et al. (2022) and Dockum & Bowern (2019) who have both shown
that for phonological analysis, it is best to have longer wordlists. This doesn’t mean that shorter
wordlists don’t have their place, but that it is important to consider the match between task and
dataset when working with legacy data or data gathered by others.

2.1. WORDLIST DATABASES AND THEIR RATIONALES. Although analysis of wordlists is not
an abundantly common research topic currently, there still exist many wordlists. Such as the Lex-
ibank database by the Max Planck Institute for Evolutionary Anthropology (List et al. 2022), the
Comparative Bantu Online Dictionary (CBOLD) by the University of California in Berkeley, or
even the Contemporary and Historical Reconstruction in the Indigenous Languages of Australia
(CHIRILA) by Yale University (Bowern 2016), which is the dataset used for Dockum & Bowern
(2019). Each of these wordlists was created to match their task and have their rationale for their
length and choice of items.

Another database for wordlists would be the Automated Similarity Judgement Program
(ASJP) database which currently holds 10,169 unique ISO codes. These wordlists only contain
40 concepts which the authors of ASJP have said to be sufficient for their task. The purpose
of ASJP was to automatically classify wordlists into different language families. They initially
tested their program with the 100-word Swadesh lists and found good results (Brown et al. 2008).
And in their subsequent paper, Holman et al. (2011), they further reduced the number of concepts
to 40 concepts. Their metric for this reduction was a concept’s loan resistance. They found that
by doing this, they were able to make their language family classifications more accurate. This
shows that their 40-word concept list is more than sufficient for their purpose. However auto-
matic language family classification is only one type of task. So even though the ASJP concept
list is very well suited to their explicit purpose, this does not mean that this concept list is well
suited to other linguistic tasks. Dockum & Bowern (2019) have already shown in their 2019 pa-
per that a randomly selected wordlist of 50 words did not reliably find every phoneme in a lan-
guage.

Meanwhile, the International Dictionary Series (IDS) is a collection of wordlists that cur-
rently has a total of 215 languages. The purpose of these wordlists was to allow comparative
linguistic studies to be done. In a paper by some of the creators of IDS (Key & Comrie 2023),
they explained the rationale behind their data collection guidelines. The IDS has 1310 different



concepts that they use as a guideline for data collection. While not every language will have ev-
ery single concept and may be left blank, the guidelines specified that words may be added but
never removed from the master list. This was to ensure that all IDS wordlists were compatible for
comparative studies. The authors acknowledge that gathering enough data for an IDS wordlist is
a time-consuming undertaking and they estimated one wordlist should take about ‘one person-
month of work’. This is in comparison to an ASJP wordlist which was estimated would only take
‘less than a day’. A month of dedicated work will be more expensive than a day’s worth of work
and also be less suited for volunteer work because of the high amount of commitment needed.

As for why the IDS chose the 1310 concepts for their master list, the IDS creators adapted work
done by Carl Buck from 1929 and 1949. There were no explicit criteria that Buck used when
choosing his words other than the goal, which was to ‘work out a tentative and skeleton dictio-
nary covering a limited number, perhaps a thousand, of representative groups of synonyms in

the principal IE languages’ (Key & Comrie 2023). So while no explicit criteria was laid out for
how and why which words should be used and how many, Buck was relying on his experience

in doing comparative studies in Indo-European to create a master list. While Dockum & Bowern
(2019) suggested a minimal wordlist of 400 items, more data is never a detrimental thing because
it widens the scope of what is possible with the data. The creators and editors of the IDS go to
great lengths to ensure that the data is standardized and the wordlists are of high quality. Not ev-
ery project will have the luxury or capability to produce a high-quality wordlist that is this long.
So the question of how long is long enough still remains.

3. Methodology. The data for this paper are wordlists of 55 different Kra-Dai languages (Dockum,
2024). These have been aggregated from fieldwork done by other researchers, before being cleaned
and standardized to a large extent. Some of the transcriptions from older studies were done in
pseudo-IPA. For this study, variation between linguists in phonemic notation should not pose a
major problem for the research question. It should be reasonable to assume that each author was
internally consistent within each list. So we only account for known notation variations in the
scripts which will be described below. For this study, the calculation of each metric only happens
with data from one specific language at a time. This is why it is fine for the datasets used in this
study to have different phonemic notations.

A list of the languages can be found in the appendix. Each language had at least 2000 items
which is the same lower threshold used in Dockum & Bowern (2019) to judge a lexicon large
enough to stand in for a full” lexicon for purposes of this research question.

3.1. SUBSET SIZES. Similar to Dockum & Bowern (2019), for each language, a random sub-
set of words is selected and then metrics are computed for that subset. This is done 1500 times
for each language so that the results can be averaged over (see 3.2 for justification of this num-
ber). Then the wordlist sample subset size is increased and the whole process is repeated. The
subset sizes start at 50 and increase in increments of 50 up to 500. After that, then the subset size
increases in increments of 100 up to 1200, as well as subset sizes of 1500 and 2000. Thus the
subset sizes tested are as follows:

50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1500, 2000

More granularity was added to some parts of the chosen subset because these subset sizes
showed the most drastic change in results. Furthermore, early results showed that the most likely
candidate for a minimal wordlist size was in the 200-500 range which was why the granularity of
the subsets was increased to 50 in that range. This follows what Dockum & Bowern (2019) did
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in their study which first included a preliminary run with a very wide range of subset sizes before
reducing their scope in subsequent runs.

3.2. ITERATIONS. At each different subset sample size, we do the sampling 1500 times and take
the average of the results of those 1500 runs. We arrived at this number by plotting our metric
values against the number of iterations. The metrics have been normalized between 0O to 1 so that
they can be easily compared on the same graph. We looked for the point at which the lines on
the graph are completely flat, which was at around 1500 iterations which means they have stabi-
lized and any additional iterations did not change the results very much. There can be arguments
made for choosing 1000 iterations or even 500 because the metrics do look pretty stable already
at that point. But for this dataset, the computations are not very computationally expensive to run
so we have chosen to use a more generous number of iterations. But this threshold will change
depending on the dataset so it is wise to rerun these calculations every time when working with
new datasets.

3.3. SEGMENTATION. Because of the nature of the languages in this dataset and the format

they were in, certain decisions need to be made about what counts as individual sounds, as lex-
ical forms in this dataset are not pre-segmented. And because of the scale of the data, these de-
cisions needed to be able to be codified into the scripts, as hand-evaluating every form in the
dataset is not feasible. For this study, we decided to use maximal clusters. This means that a word
like /klua/, which means ‘salt’ in Thai, would have two sounds: /kI/ and /ua/. The first two con-
sonants are clustered together and considered one sound. This is because we would not want to
assume that a language has the /k/ and /1/ sounds just because they appear in combination. Maybe
/1/ solely appears following /k/. We then would not want to consider a subset wordlist incom-
plete if we never find an /1/ in isolation. The same can be applied to vowels and their off-glides.
While some sounds will appear in diphthongs, they may not necessarily appear on their own so
we should count each diphthong or triphthong as one sound.

The general guidelines for segmentation are as mentioned in the previous paragraph. How-
ever, there are still some edge cases because the data in the Kra-Dai dataset has been transcribed
using varying IPA and pseudo-IPA conventions from different locations and points in time. These
exceptions to the rules above are then just hard-coded into the procedure. Also, each author fa-
vored different methods of analysis which resulted in differences in transcription even for the
same sounds so all possible combinations had to be considered and accounted for.

For this study, we did take vowel length into account. If a short and long ‘a’ existed in the
full lexicon, we would need to see both a short ‘a’ and long ‘a’ within a subset to say that the
subset had full coverage. Because we are going for maximal clustering to decide what counts as a
sound, the length of the vowel is important because we are including off-glides in vowel clusters.

On the other hand, lexical tone was not a factor that we took into account. So if we found an
‘a’ with a first tone, we would not also need to see an ‘a’ with a second tone. Since this seems
like it would just straightforwardly increase the number of sounds in a language, we decided
not to focus on this aspect of the dataset for this study. However, this could be a topic for future
study.

Also as a way to exclude possible human errors such as typos from the dataset, we set a
marginal phoneme threshold. Similarly to Dockum & Bowern (2019), this study has set the marginal
phoneme threshold to be 0.5%. This means that if a sound only appears in 0.5% of words in the
full lexicon, then we exclude it from our calculations as a phoneme to look for. The reason for



this is that if a phoneme appears too infrequently, then there is a high chance that it is a mistake
or typo in the data or a faulty transcription. Dockum & Bowern (2019) used 0.5% as the thresh-
old for marginal phonemes and this paper has seen no compelling reason to change it so far.

3.4. METRICS. A wordlist is judged to be completed based on two criteria introduced by Dockum
& Bowern (2019). The first criteria is if we find every phoneme within the wordlists and the sec-
ond is if the frequency of every phoneme is statistically comparable to the full lexicon.

3.4.1. COVERAGE. The first metric is pretty straightforward. If a wordlist observes every phoneme
that is present in the full lexicon, this is a wordlist with full coverage. Then we calculate the cov-
erage score of the language using this formula:

no. of random subsets with full coverage

coverage =
g total no. of random subsets

This will result in a number between 0 and 1 where are higher number is better. A higher
coverage number would indicate that more random subsets are finding every phoneme.

3.4.2. MEAN SQUARED ERROR. Quantifying, if phoneme frequencies are statically compara-
ble, is slightly harder than quantifying coverage. This part of the methodology introduces new
techniques that build upon the techniques used by Dockum & Bowern (2019). In the 2019 pa-
per, the authors used a metric called Residual Sum of Squares or RSS. To calculate this, first,

the difference between the subset’s frequency of a phoneme and the full lexicon’s frequency was
squared. This was done for every phoneme in the language and then this was summed together as
the RSS for a language at a given subset size. This can be shown another way in this equation by
calculating the RSS for language X:

pf = phoneme frequency

X = language

X’s phonemes

RSSy = Z (pfsubset _ pffull)2

p = phoneme

In Dockum & Bowern (2019), the authors plotted coverage scores and RSS on a chart and
employed elbow finding to make a judgment to see at which subset size there stop being signifi-
cant improvements to the RSS score. The process of elbow finding will be described in more de-
tail later in the section. This is how the 400-word recommendation mentioned earlier was arrived
at.

For this paper, the method of calculating coverage has been kept the same as the 2019 paper.
However, for the second criterion, we have decided to change the metric from RSS to three new
metrics which are Mean Squared Error (MSE), Mean Absolute Error (MAE), and Max Absolute
Error (MaxAE). MSE is very similar to RSS but instead of only adding the squared of the differ-
ence together, we will also divide it by the number of phonemes.

RSS

MSE =
no.o fphoneme




The reason we have decided to change RSS to MSE for this paper is so that we can compare
these values between languages. Because RSS does not take into account phoneme inventory at
all, a language with a larger phoneme inventory may have a larger RSS score just because of this.
Changing this is to MSE it allows us to do a more detailed comparison of languages with this
metric.

3.4.3. MEAN ABSOLUTE ERROR. In addition to this, we have also decided to include MAE as
another metric. This is because MSE will exaggerate larger differences so an alternative metric
may capture different data points that were overlooked by MSE. The formula that we used to
calculate this is below.

X’s phonemes

SumAE = Z |pfsubset . pffull|

p = phoneme

SumAE

MAE =
no.ofphoneme

3.4.4. MAXIMUM ABSOLUTE ERROR. And finally, the last metric is MaxAE. To calculate this
we want to find the phoneme with the largest absolute difference between their frequency in the
subset and their frequency in the full lexicon.

MaxrAE = max(‘pfsubset _pffull’)

The reason for including this metric is to see if one phoneme is grossly under or over-represented
in the subset. When taking the average of the error of the phonemes in the two previous metrics,
this may hide the fact that one phoneme is under-represented compared to the others. So to rule
out this possibility, we have included this metric as one of the metrics to test. The ideal situation
is that the MaxAE is only slightly higher than the MAE. This shows that most of the phonemes
have similar levels of error instead of one phoneme being responsible for a lot of that error.
The purpose of having more metrics is to make the minimal wordlist judgment more robust.
Each metric captures different types of errors which helps to highlight different shortcomings of
each wordlist. In Dockum & Bowern (2019), only one metric was used to do elbow finding.

3.5. ELBOW FINDING. Elbow finding is the process of looking at how a dependent variable
changes as we change the independent variable and finding the point at which we have the most
improvement for the least amount of work or the elbow. In the context of this study, this would
be finding the point at which we can be sure that a subset is complete with the least amount of
random words elicited. The word elbow comes from the fact that in graphs of this nature there is
a sharp point where we see the gradient of change go from steep to flat. This change in gradient
indicates that this is the point where good results can be obtained with the least amount of effort.
However, elbow finding is subjective but with more metrics, this allows us to see if the elbows
align. By also checking if the elbows align, we provide stronger evidence to validate our claims.

4. Results.

4.1. KRA-DAI RESULTS. In this section, we will discuss the results of this study and some of
their implications. In Figures 1, 2, 3 and 4, you can see the results of all of the metrics average
over every language in the Kra-Dai dataset.



o
g 6000 1
5 5000 1
i 4000 1
e
% 3000 1
=]
2 2000
(2]
< 1000 1
©
$ 1 - -
QOO D O 0 2 0 © (s} (e QU0 D D D 0 0 ° i) (s
OISR ER &S SSIY & S CFIIRRLER S S SIS S N
NN N ~ [ NNy ~ [
Subset Size Subset Size

Figure 1. Coverage of the Kra-Dai dataset for ~ Figure 2. Meanse Squared Error (MSE) of the
subset sizes 50-2000 Kra-Dai dataset for subset sizes 50-2000

950
=

S
o O

o

Mean Absolute Error (
= 8 w

o

SSOEEES S SSSSS & S SSSSEES S S S SSS & S
NNVVIMY © N o 6 S ~ ) oS 20 © N © O O~ ©y o
N NN ~ ~ NN N ~ N

Subset Size Subset Size

Figure 3. Mean Absolute Error (MAE) of the Figure 4. Max Absolute Error (MaxAE) of the
Kra-Dai dataset for subset sizes 50-2000 Kra-Dai dataset for subset sizes 50-2000

In Figure 1, the subset sizes are shown on the x-axis, and the coverage percentage on the y-
axis. How coverage is calculated for each subset can be found in the methodology section. For
this visualization, the coverage values of 1500 ! subsets in each subset sized are averaged to give
a number between 0 and 1. 0 means that none of the 1500 subsets contained every phoneme from
that language. 1 would mean that all of the 1500 subsets contained every phoneme from that lan-
guage. So the trend we are hoping to see is that the coverage average increases as we increase
the subset size which is shown along the button of the graph. We expect this because the more
words that are present within a subset, the higher the possibility that those words will contain ev-
ery phoneme. We can see that the trend is as we expected and that the coverage average gets very
close to 1 at around 700-800 words in a subset.

The next three graphs produced for the Kra-Dai data are the three metrics used to measure
distribution of a subset. Similar to the coverage graph, the subset sizes are listed along the x-axis
and the specific error metric is on the y-axis. As described in the methodology section, the er-
ror metrics used in this paper are Mean Squared Error (MSE), Mean Absolute Error (MAE), and
Max Absolute Error (MaxAE). For these metrics, a higher number on a metric means there is
more error within a subset. So for these three metrics, we are looking for a value that is as close
to 0 as possible. This means the trend we are expecting to see is that the error metric decreases as
the subset sizes increases. We expect this to occur because as we increase the number of words
in every subset, the frequency at which phonemes appear should become more and more simi-
lar to their frequency in real-life usage. As we can observe in Figure 2, 3, and 4, we can see that
the trend matches our expectations. All three error metric values decrease as the subset sizes in-

I Reference Section 3.2



crease.

The process of elbow finding has been explained in the methodology section and now we
have to apply the elbow finding principle to these graphs. A big problem with all but one of these
four graphs is that there is not an immediately apparent elbow. Figure 2 would be the only graph
where we could make a convincing argument for placing the elbow at around in the 300-450
range.
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4.2. ALTERNATIVE VISUALIZATIONS. Because the current graphs are not as clear cut as we
would have hoped for, we then produced alternative visualization to hopefully allow us to draw
a more robust conclusion from this data. Instead of just plotting the results on the y-axis, we will
instead plot the difference in a metric when moving from one subset size to the next subset size.
These graphs can be seen in Figure 5, 6, 7 and 8. These graphs better highlight the amount a met-
ric changes as we increase the subset size. So at the point where we see little to no improvement
when increasing the subset size, it means that that is a good place to stop. While having a very
large wordlist size will increase the completeness of a wordlist, fieldwork and language docu-
mentation can be very expensive in terms of time and money so we would to find a place to stop
that will be the least expensive in terms of resources but still yield reliable results.

From these graphs, it becomes apparent that all of the distribution metrics (MSE, MAE,
MaxAE) have clear elbows and are around the 300-400 words mark. We can see that after this
point, increasing the size of the subset only yields very minuscule improvements which are not



worth doing if resources are limited. If we look at the raw values of the distribution metric such
as MAE, we will see that the improvements start to stagnate around MAE of 100. An MAE of
100 means that a phoneme is on average being over or underrepresented by 100%. So to give an
example scenario, say a phoneme should appear in 5% of words, in the subset it may appear in
0% of words or 10% of words to get an MAE of 100. The key point here is that it may appear in
0% of words in the subset. This simply means that we are not seeing this phoneme at all which
would lower our coverage scores.

It becomes more clear here that the limiting factor is the coverage number in Figure 5. As
can be seen in the graph, it takes a lot longer for the change in coverage to get close to zero which
happens around the 700-800 range. This means that any increase in wordlist size before that
threshold will still cause significant improvements in the chance of finding every phoneme in
your language. Having shown that coverage is the limiting factor in this experiment means that
coverage will be the metric that carries the most weight when deciding how long wordlists should
be.
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4.3. CHIRILA DATASET RESULTS WITH NEW METHODOLOGY. To provide a comparison to

the results from the Kra-Dai data, the data from the Chirila dataset used in the original Dockum
& Bowern (2019) paper was run with the new methodology used in this study. The results can

be seen in figures 9, 10, 11 and 12. The most notable difference that can be observed in these
graphs, in comparison to the ones generated from the Kra-Dai languages dataset, is that the graph
showing average coverage is much steeper in the first few subset sizes and reaches an average
value of close to 1 much quicker than shown in Figure 1. This comparison can be clearly shown
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in Table 1 which compares the point at which each dataset crosses certain benchmarks. Because
we have shown earlier that coverage is the limiting factor, we will only be comparing the results
for coverage. As is shown in the table, if you randomly sample around 300 words from a lan-
guage in the Chirila dataset or a similar Australian language, 75% of the time you will have a
dataset that contains every phoneme in that language. Then you compare this to a language in the
Kra-Dai dataset or a similar language, you will need around 400 words to reach to same level of
confidence. This chart may also be used to inform decisions as not every task requires phonolog-
ically complete wordlists, such as language family classification done in Holman et al. (2008).

It was shown that they were able to get good results on wordlists as short as 40 words. Different
tasks require varying degrees of confidence in the wordlist being phonologically complete, so it is
possible to use Table 1 as a rough guideline.

Probability of having full | Number of Words for Number of Words for
coverage Kra-Dai Chirila

75% 400 300

90% 600 400

95% 600 500

98% 800 600

99.5% 900 800

Table 1. Probability of full coverage

4.4. LANGUAGE COMPARISONS. The previous section showed graphs that are averaged over
all the languages in the dataset. So far, we have chosen to mainly focus on the aggregated data
from every language because we observed that most of the languages from the Kra-Dai dataset
produced very similar trends. However, there is still much that can be learned from examining the
results of individual languages.

For example, in the Kra-Dai dataset, the language with the smallest phoneme inventory is
Yongbei Zhuang. Yongbei Zhuang has a total phoneme inventory of 32 with 13 consonants and
19 vowels. The coverage graphs for this are shown in Figure 13. Because the distribution met-
ric graphs are very similar we am not including them here. The coverage graph is notably more
similar to the averaged coverage Chirila dataset graph in Figure 9 than the aggregated graph
for the Kra-Dai dataset in Figure 1. Australian languages are well known for having compara-
tively small phoneme inventories. The language with the largest inventory in the Chirila dataset is
Wubuy with 25 consonants and 8 vowels for a total of 33 phonemes with is very close to Yongbei
Zhuang’s 32 total phonemes. Wubuy’s coverage graph can be seen in Figure 16.2 This shows that
phoneme inventory size affects a wordlist size more than its language family. To illustrate this
point, we will compare the subset size needed to reach a 95% probability of having full coverage
for the languages with the smallest and largest phoneme inventory from the Kra-Dai and Chirila
datasets. As stated earlier, Yongbei Zhuang is the Kra-Dai language with the smallest phoneme
inventory and Maonan is the one with the highest. For the Chirila dataset, Miriwoong is the lan-

2 See Dockum & Bowern (2019), footnote 3 for discussion of Wubuy and its use of archiphonemes, which makes it
less comparable to other wordlists from the Chirila dataset. Wubuy was excluded from that study, but it is retained
here.
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guage with the smallest phoneme inventory and Wubuy is the one with the highest. The coverage
graphs of Miriwoong and Maonan are figures 15 and 14 respectively.

Coverage of luo2008guangxi:c2 Coverage of luo2008guangxi:c12

SIS SSS$Ss § 8 TEBTESSESESS & §
Subset Size Subset Size
Figure 13. Coverage of Yongbei Zhuang Figure 14. Coverage of Maonan
Coverage of Miriwoong Coverage of Wubuy
1.0
0 0.8
(o))
© 0.6
(]
3 0.4
o
0.2

0.0
SEBSBESESSSE § &
N NN ~ ~
Subset Size
Figure 15. Coverage of Miriwoong Figure 16. Coverage of Wubuy

So Table 2 shows the statistics of these four languages and how they compare against one
another. One interesting point about this comparison is that even though both Yongbei Zhuang
and Wubuy have very similar phoneme inventories, Wubuy requires a much longer wordlist to
reach the same confidence level as Yongbei Zhuang. So this shows that there are other factors
than just phoneme inventory size that can affect the wordlist size required for a phonologically
complete wordlist.

Miriwoong | Yongbei Zhuang | Wubuy | Maonan
Total phonemes 18 32 33 64
Consonants 14 13 25 43
Vowels 4 19 8 21
Subset size for 95% confi- 100 300 800 800
dence level

Table 2. Comparison of different languages coverage

4.5. CORRELATION OF PHONEME INVENTORY AND SUBSET SIZES. The take this idea further,
we created a new visualization to show the correlation between phoneme inventory and subset
size required for a minimally complete wordlist.

Figure 17 shows all the languages from both the Kra-Dai and Chirila datasets plotted on one
graph, with the Chirila dataset being the green dots and the Kra-Dai being the purple dots. The x-
axis is the total phoneme inventory of each language and the y-axis is the subset size at which the
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Correlation of total phoneme inventory to coverage
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Figure 17. Correlation of total phoneme inventory to coverage at 95% confidence

language achieved full phoneme coverage for that language in at least 95% for the 1500 runs in
our tests. We can see that the Kra-Dai language on average has much larger phoneme inventories
compared to the languages from the Chirila dataset. To show the correlation, we have drawn a
line of best fit using Ordinary Least Squares (OLS). OLS creates a regression line that minimizes
the distance of all the points given to that line. The OLS formula produced this equation for the
line of best fit:

y = 11.30z + 70.66 (1)
r? =0.624

We have a positive x coefficient which shows that as the x variable gets larger so does the y
variable which matches our expectations of larger phoneme inventories needing larger wordlist
sizes. The r? value of 0.624 shows that around 60% of the variance in the y variable (wordlist
size) can be explained by the x variable (phoneme inventory size). This shows us that there is
very strong evidence to suggest that these variables are correlated and that there is a clear trend.
Because OLS provides an equation for the line of best fit, it is then possible to extrapolate these
results to other languages. One problem with this is that if no fieldwork has been done yet, how
do we know the phoneme inventory of a language? But if we did know, for example, the lan-
guage family ahead of time, it should be possible to use this equation to give a more accurate
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recommendation for the wordlist size that is desired. However, this equation was made with lim-
ited data from only two datasets so these results should be used with that in mind.

5. Recommendations and Conclusion. Drawing from these results, we can recommend new
takeaways to help inform language documentation planning. Building upon the conclusions from
Dockum & Bowern (2019) which also looked at coverage and distribution metrics is that be-
tween these two metrics, coverage is the limiting factor. The distribution metrics, MAE, MSE,
and MaxAE, becomes more important when we are consistently getting high coverage. However
because most wordlists already struggle to achieve full coverage, the distribution metrics become
less important. This is because if a phoneme is missing from a wordlist, then it will also nega-
tively affect the distribution metrics. So when using this work to help with fieldwork logistics, the
coverage metric is the most important metric to consider when making those decisions. But this
does create a little bit of a chicken and egg situation where to know how long a wordlist should
be, you want to know how many phonemes exist in a language. If this is a language that has not
been documented before, how do you know how many phonemes it has?

The best recommendation we can make based on the results of this study is to first reference
Table 1 and pick a level of confidence that is appropriate for the intended use of the wordlist.
Next, insofar as possible, estimate an expected phoneme inventory size in a language, given in-
formation already known about it (e.g. typological profile, language family, geographic region).
Then use Equation (1) (or equivalent equation based on the level of confidence needed) to make
a statistically well-motivated estimate of how large the minimal wordlist for each language under
study will need to be.

In sum, the findings of this paper support the findings of Dockum & Bowern (2019) and
Baird et al. (2022), and we also conclude that wordlists should be longer than has often been
common practice for survey-style documentation work. The recommendation in Dockum &
Bowern (2019) of 400 words for a wordlist may be an overly simplified rule of thumb, but is still
a reasonable and actionable recommendation that is backed up by the findings from this paper
and is still a good baseline if it is not possible to use any of the more nuanced methods suggested
by this paper.

There will inevitably be limitations to the conclusions drawn here. This paper does not fully
answer all of the questions posed at the start. However, the most important conclusion from this
paper is still that wordlists should be longer than they have often traditionally been, if we want
to accurately glean from them an accurate phonological profile of a language variety. The re-
sults from this study also strongly advocate for a data-driven, procedural approach to both lo-
gistical planning of survey-style fieldwork, and to research design for studies that plan to work
with legacy field data. While additional research is needed to further advance this discussion of
wordlist evaluation, nonetheless, this paper has introduced additional findings and measures to
move this topic forward.

For full bibliographic detail of the wordlists used in the study, please take a look at the full thesis
version of this paper for details. It can be accessed at https://works.swarthmore.edu/theses/957/
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