
 

Dynamic Field Theory unifies discrete and continuous aspects of linguistic representations 

Michael C. Stern* 

Abstract. In recent years, a growing body of research has sought to explain 
linguistic phenomena in terms of the dynamics of neural activity, through the lens of 
Dynamic Field Theory (DFT: Schöner, Spencer & DFT Research Group 2016). DFT 
is a general framework for understanding perception, action, and cognition as 
resulting from activity in interconnected populations of neurons. DFT formalizes 
neural activity in the language of nonlinear dynamical systems. This expression 
allows apparently categorical behavior to emerge from an underlyingly continuous 
state space. In this paper, I provide a review of research investigating linguistic 
phenomena through the lens of DFT, with a particular emphasis on how this research 
unifies discrete and continuous aspects of linguistic representations, and in doing so, 
unifies disparate empirical findings and theoretical insights from various domains of 
linguistics. 
Keywords. Dynamic Field Theory; dynamical systems; neurolinguistics; psycholin-
guistics; computational models  

1. Discrete and continuous representations in linguistics. Discrete categories play an im-
portant role in describing language. Discrete categorical representations like distinctive features, 
phonemes, morphemes, and syntactic categories, in combination with operations like rules and 
constraints, have afforded explanations for a wide range of phenomena in human language. The-
ories that utilize discrete representations often make strong predictions about cross-linguistic 
typology, and place constraints on possible human languages, a core goal of linguistic theory. 
Moreover, computational models of language processing that make use of the discrete represen-
tations from linguistic theory have offered explanations of patterns in speech errors and speech 
planning times (e.g., Dell 1986; Levelt, Roelofs & Meyer 1999). In general, more similar repre-
sentations are more likely to interact during speaking. For instance, an error of substitution—
accidentally replacing one representation, e.g., phoneme, with another—is more likely when the 
intended and errorful representations are more similar. For example, if one intends to say <god>, 
they are more likely to accidentally say <cod> than they are to say <sod>, because /g/ and /k/ dif-
fer only in a single phonological feature, voicing, while /g/ and /s/ differ in a greater number of 
features. Computational models based on discrete representations encode similarity through hier-
archical levels of representation. /g/ and /k/ are categorically distinct on a phonemic level of 
representation, but they share many connections to a featural level of representation. It is this 
pattern of overlap in connections that encodes similarity between discrete representations. 

1.1 RELATIONSHIP BETWEEN DISCRETE REPRESENTATIONS AND CONTINUOUS MEASUREMENTS. Dis-
crete linguistic representations, while theoretically powerful, are not directly observable. Speech 
articulation involves the movement of effectors like the tongue, lips, and larynx through continu-
ous space over continuous time. These movements perturb the air around the speaker, generating 
pressure fluctuations (sound waves) which are also continuous in space and time. Moreover, the 
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neural activity underlying speech production and comprehension is continuous in state space: the 
membrane potentials of cells vary continuously over time, contributing to continuous patterns of 
aggregate activity across neural populations. Finally, the neural connectivity which underlies lin-
guistic knowledge varies continuously, with the strength of synaptic connections between 
neurons changing gradiently over an individual’s lifetime.  

A logical possibility is that these continuous variables instantiate discrete linguistic repre-
sentations, but ultimately only the discrete representations are relevant for a theory of language. 
A deterministic map between discrete linguistic representations like phonemes and continuous 
observables like articulatory movements would suggest that discrete representations can provide 
a more-or-less complete theory of human language, since continuous observables would be de-
termined by the discrete representations. However, careful measurement of the continuous 
variables relevant for language complexifies this view. A variety of factors can gradiently but 
systematically modulate the relationship between discrete linguistic categories and their physical 
instantiation in articulation. For example, speech errors, while often subjectively perceived as 
categorical (e.g., Fromkin 1971), actually exhibit a gradient “trace” of the intended utterance in 
articulation (Mowrey & MacKay 1990; Pouplier & Goldstein 2010) and the resulting acoustics 
(Goldrick & Blumstein 2006; Alderete et al. 2021). If one accidentally says <cod> when they in-
tended to say <god> (as in the example above), the errorful [k] will tend to have a voice onset 
time (VOT; primary phonetic dimension differentiating voiced and voiceless stops) which is 
slightly shorter (more similar to the voiced stop [g]) relative to an intended production of <cod>. 
In this case, the competitor <god> exerts a small, measurable influence on the articulation of 
<cod>. Lexical competitors also exert gradient effects on articulation in non-errorful speech. For 
instance, the VOT in <cod> is, on average, slightly longer than the VOT in <kid>, which has no 
minimal pair competitor *<gid> (e.g., Baese-Berk & Goldrick 2009; Wedel, Nelson & Sharp 
2018). This effect, termed “contrastive hyperarticulation” (Wedel, Nelson & Sharp 2018), sug-
gests a dissimilatory influence of lexical competitors on articulation, in the opposite direction as 
the assimilatory effect observed in speech errors. Social factors can also gradiently modulate 
speech articulation. For instance, speakers tend to gradiently shift their pronunciations towards 
those of their interlocutor—“converging” towards the interlocutor (e.g., Pardo, 2006)—an effect 
that is modulated by social characteristics of both the speaker and the listener like gender, race, 
and perceived attractiveness (e.g., Babel 2012; Wade 2022). During speech production, each of 
these (and other) influences interact in potentially complex ways. For instance, lexical competi-
tion in non-errorful speech interacts with the speaker’s dialect (e.g., Clopper & Tamati 2014) and 
the perceived social identity of the interlocutor (Lee-Kim & Chou 2022). 

The patterns described above demonstrate that the mapping from discrete linguistic repre-
sentations to continuous articulatory movements is variable rather than deterministic. While 
some of this variability appears random (e.g., Whalen et al. 2018; Whalen & Chen 2019), other 
aspects of this variability are systematic, i.e., predicted by linguistic and social factors like those 
described above. Systematic variability in the relationship between discrete linguistic representa-
tions and continuous articulatory movements points to the need for a theory of this relationship. 
In other words, discrete representations, in combination with a deterministic map from discrete 
representations to continuous articulatory movements, cannot provide a complete theory of hu-
man language.  
1.2 CONTINUOUS REPRESENTATIONS IN LINGUISTICS. A number of theories in linguistics formalize 
aspects of the relationship between discrete and continuous representations. For instance, in Ar-
ticulatory Phonology (Browman & Goldstein 1986; Browman & Goldstein 1989; Browman & 
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Goldstein 1992), phonological representations consist of sets of constriction goals in the vocal 
tract, or articulatory gestures. Each gesture is constituted by a set of continuous variables like 
constriction location, constriction degree, and timing of gestural activation. Gestures drive physi-
cal movement of articulators through the Task Dynamic model (Saltzman & Munhall 1989). 
Even though gesture parameters are continuous representations which generate movement 
through continuous space, they also represent phonological contrast, since distinct parameters 
can represent distinct phonemes. For this reason, Articulatory Phonology has been argued to 
bridge the divide between discrete (phonological) and continuous (phonetic) representation (Is-
karous 2017; Iskarous & Pouplier 2022). Articulatory Phonology is able to explain much of the 
systematic variability in the relationship between phonological representation and articulatory 
movement through temporal overlap of gestures and blending of gestural parameters.    

In exemplar theory (Pierrehumbert 2001; Pierrehumbert 2002), discrete linguistic categories 
are constituted by sets of episodic memories or exemplars associated with that category. Each 
exemplar encodes detailed information on continuous phonetic dimensions. Each exemplar is 
also labeled as a member of one or more discrete categories, both linguistic and social. For in-
stance, a single exemplar—containing detailed phonetic information—may simultaneously be 
associated with a particular phonological category, a particular lexical item, a particular person, 
and so on. In this way, linguistic representations contain both discrete and continuous infor-
mation. While categories are inherently discrete, they exist in a shared continuous space, since 
they are constituted by (potentially overlapping) clouds of individual exemplars which are de-
fined in this space. Exemplar theory has offered explanations for the relationship between word 
frequency and long-term phonetic change, as well as word-specific phonetic variation, for exam-
ple (e.g., Wedel 2012; Hay et al. 2015).   

Finally, connectionist or parallel distributed processing models (PDP: Rumelhart, 
McClelland, & PDP Research Group 1986; McClelland & Rogers 2003) represent categories as 
patterns of activation distributed over many interconnected processing units. The activation of 
each unit, and the strength of its connections to other units, are continuous variables which 
change during training with examples. While some individual units can represent categories, 
other units are not interpretable on their own. Rather, these units contribute to the representation 
of multiple categories through their activation and connections to other units. Dimensionality re-
duction methods like principal component analysis can reveal a continuous similarity structure 
which relates categories. PDP models offer explanations for phenomena related to category 
learning (e.g., Mareschal, French & Quinn 2000) and decay in aging or dementia (e.g., Murre, 
Graham & Hodges 2001), as well as phenomena related to real-time word recognition (e.g., 
Kawamoto, 1993). A particular framework in the PDP tradition, gradient symbol processing 
(GSP: Smolensky, Goldrick & Mathis 2014), explicitly relates distributed activation patterns to 
discrete representations from linguistic theory. By further linking these activation patterns to ges-
tural timing in Task Dynamics, a GSP model of phonological planning derives the trace effect in 
speech errors as resulting from activation patterns that are intermediate in continuous similarity 
space between the intended and errorful category (Goldrick & Chu 2014). 

The remainder of this paper is structured as follows. In Section 2, I provide a general intro-
duction to Dynamic Field Theory (DFT: Schöner, Spencer & DFT Research Group 2016). DFT, 
when applied to human language, can be seen as part of the tradition of utilizing continuous rep-
resentations in linguistic theory. In particular, Articulatory Phonology is expressed in the 
framework of dynamical systems (e.g., Port & Van Gelder, 1998), which is the same framework 
used by DFT, allowing a natural link between the theories. A relatively unique benefit of DFT is 
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that it grounds representations in the dynamics of neural activity. In doing so, it provides tight 
constraints on possible representations and processes, and increases empirical falsifiability. In 
Section 3, I review research that has utilized DFT to bridge the gap between discrete and contin-
uous aspects of linguistic representations. Section 4 concludes by outlining the general theory of 
language suggested by the research reviewed in Section 3. 
2. Dynamic Field Theory. Dynamic Field Theory (DFT: Schöner, Spencer & DFT Research 
Group 2016) is a theoretical and modeling framework for understanding and simulating percep-
tion, action, and cognition as resulting from the coordinated activity of interconnected 
populations of neurons. In this section, I give a brief introduction to the framework. Readers who 
want to learn more are referred to the introductory textbook, Schöner et al. (2016). The textbook 
includes hands-on simulation exercises using the publicly available COSIVINA software pack-
age (Schneegans 2021). Other software packages for building and simulating DFT models, along 
with tutorials and other information, e.g. about an annual summer school, are available on the 
DFT website (dynamicfieldtheory.org).  

DFT is motivated by the observation that cognition depends on an interplay between stabil-
ity and instability, two technical concepts from dynamical systems theory (e.g., Kelso, 1995, 
2012). Stability allows robustness of cognitive processes in the face of ubiquitous noise (e.g., 
neural and environmental), while instabilities allow qualitative transitions between transiently 
stable states, e.g., between a resting state and an active state, between one movement target and 
another, or between one percept and another. Another core motivation for DFT is the observation 
of neural population representation, i.e., that aggregated activity across a small set of neurons is 
a better predictor of behavior than the activity of any single cell (e.g., Georgopoulos, Schwartz & 
Kettner 1986; Jancke et al. 1999). Thus, a mesoscopic level of description (neural populations) is 
privileged relative to a microscopic (single cell) or macroscopic (whole brain region) level (Co-
hen & Newsome 2009; Schöner 2020). DFT formalizes neural population activity as a dynamical 
system which exhibits an interplay between stability and instability. In particular, excitatory con-
nections between similarly tuned neurons and inhibitory connections between differently tuned 
neurons (Erlhagen et al. 1999; Jancke et al. 1999) allow transiently stable “peaks” of activation 
to form and dissipate as instabilities (Amari 1977).  
2.1 NEURAL NODES. In DFT, both time and neural activation are represented as continuous varia-
bles. However, in some cases, a neural population represents a discrete category. For instance, 
some cells in medial temporal lobe respond selectively to stimuli related to particular people or 
objects like Jennifer Aniston or the Tower of Pisa (Quiroga et al. 2005; Quiroga 2012), and 
groups of cells in superior temporal gyrus respond selectively to sounds associated with particu-
lar phonetic categories (Mesgarani et al. 2014). In DFT, neural populations representing discrete 
categories are modeled as neural nodes. The activation dynamics of a neural node are given in 
Eq. 1:  

𝑢̇ = −𝑢 + ℎ + 𝑠(𝑡) + 𝑐 ∙ 𝑔(𝑢) + 𝑞 ∙ 𝜉(𝑡) (1) 

Eq. 1 describes the rate of change of neural activation 𝑢̇ as negatively related to current activa-
tion 𝑢. This relationship defines stable point attractor dynamics, in which activation is always 
attracted to a particular state in activation space. The position of that state is given by the sum of 
the other terms in the equation, which can change from moment to moment. ℎ is the resting state; 
𝑠(𝑡) is external input to the system, e.g., from another neural population, or from sensation; 𝑐 is 
the strength of lateral connections within the neural population, weighted by a sigmoidal function 
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of activation 𝑔(𝑢); and 𝜉(𝑡) is randomly distributed noise, weighted by 𝑞. While the 𝑢̇ = −𝑢 
component ensures point attractor dynamics, variation in the other terms over time changes the 
position of the point attractor, driving qualitative changes in behavior over time. Crucially, 𝑐 ∙
𝑔(𝑢) introduces nonlinearity into the system, such that when activation reaches a certain state, it 
can spontaneously jump to an even higher state due to lateral interaction. This spontaneous jump 
is an instability: in this case, a transition between a resting state and an active state. Instabilities 
allow discrete-seeming behavior, e.g., detection of a category, to arise in continuous time and 
continuous activation space.   
2.2 NEURAL FIELDS. Some neurons, rather than responding to a discrete category, respond to a 
specific range of metric values on a continuous dimension, e.g., the direction of a manual reach-
ing movement (Georgopoulos, Schwartz & Kettner 1986) or the position of a visual stimulus 
(Jancke et al. 1999). In the realm of speech, continuous acoustic properties of speech are encoded 
in superior temporal gyrus (Akbari et al. 2019), and continuous kinematic properties of articula-
tory movements are encoded in sensorimotor cortex (Chartier et al. 2018). In DFT, populations 
of neurons that are sensitive to the same continuous dimension are modeled as neural fields. The 
activation dynamics of a neural field are given in Eq. 2:  

𝑢̇(𝑥) = −𝑢(𝑥) + ℎ + 𝑠(𝑥, 𝑡) + 2𝑘(𝑥 − 𝑥!)𝑔4𝑢(𝑥!, 𝑡)5𝑑𝑥! + 𝑞 ∙ 𝜉(𝑥, 𝑡) (2) 

Like neural nodes, neural fields are defined by point attractor dynamics in activation space, such 
that activation is always attracted to a particular state. Unlike neural nodes, activation in a neural 
field is defined over a continuous dimension 𝑥. Input 𝑠 is also defined over 𝑥, such that input is 
localized to certain regions of the continuous dimension. Lateral interaction 𝑘, while still 
weighted by the sigmoidal function 𝑔, is defined over the metric distance between the neurons 
contributing activation 𝑥! and the neurons receiving activation 𝑥. For neurons that are sensitive 
to nearby regions of the continuous dimension (i.e., 𝑥 − 𝑥! is small), interaction 𝑘 is excitatory. 
For neurons that are sensitive to more distant regions of the continuous dimension (i.e.,  𝑥 − 𝑥! is 
large), interaction 𝑘 is inhibitory. Like with neural nodes, lateral interaction in neural fields intro-
duces nonlinearity which causes instabilities, i.e., spontaneous transitions between resting and 
active states. In the case of fields, active states are “peaks” of activation, localized to a specific 
region of the field. Local excitation stabilizes peaks of activation against noise and decay, and 
distal inhibition narrows the peak and prevents runaway activation. The location of an activation 
peak in the field contains information about the environment (in the case of a perception field) or 
about a movement goal (in the case of a motor field). For instance, a neural field representing the 
positions of objects in space may receive input 𝑠(𝑥, 𝑡) localized to a rightward region of the di-
mension 𝑥 from a visual stimulus located to the right of the perceiver. This input may cause an 
activation peak on the rightward side of the field, representing detection of the object to the right 
of the receiver. Through synaptic projection to other neural populations, this activation peak may 
trigger peaks in other fields, or activate nodes representing categories, which may trigger further 
downstream processing through further synaptic connections. Simulated architectures containing 
interconnected nodes and fields can autonomously generate behavior, e.g., visually searching a 
scene (Grieben & Schöner 2022) or moving through a physical space (Bicho, Mallet & Schöner 
2000). 
2.3 RELATIONSHIP BETWEEN DFT AND NEURAL MEASUREMENTS. The basic neural assumptions 
underlying DFT are primarily motivated by single-cell recordings in animals (e.g., 
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Georgopoulos, Schwartz & Kettner 1986; Jancke et al. 1999). For instance, neural fields have 
been constructed from the measured tuning curves of individual neurons in cat visual cortex 
(Erlhagen et al. 1999). Although it is possible to relate neural activation from DFT simulations to 
electrophysiological and hemodynamic recordings in humans (Wijeakumar et al. 2017), applica-
tions of DFT to humans have primarily been motivated and constrained by behavioral data (e.g., 
Erlhagen & Schöner 2002), under the assumption that the basic dynamics of neural population 
activity are similar across species. This is because single-neuron recording in humans is highly 
invasive, and simultaneous recording from many individual neurons in humans has so far been 
very difficult, although methods are improving, e.g., with the Neuropixels probe (Jun et al. 
2017).  

Although the aggregate activity in a neural population derives from the activity of the com-
ponent neurons, the DFT formalisms of neural nodes and neural fields abstract away from the 
activity of each individual neuron. This allows for a low-dimensional description of neural activ-
ity which is directly relatable to cognitive, perceptual, and behavioral variables. However, the 
cost of such a description is that some details are lost. For instance, individual neural spikes are 
not modeled. Rather, aggregated spiking activity across a neural population is estimated via inte-
gration over short timescales. This estimation or “mean-field approximation” relies on particular 
assumptions, e.g., that spiking activity across a population is sufficiently frequent and asynchro-
nous, which does not hold in all cases (e.g., Faugeras, Touboul & Cessac 2009). For instance, 
synchronized oscillatory activity in neural populations has been argued to be important for some 
cognitive processes (e.g., Churchland et al. 2012), including some related to speech (e.g., 
Poeppel & Assaneo 2020). Moreover, some processes related to long-term change in synaptic 
strength depend on the temporal phasing between pre- and post-synaptic spikes (e.g., Markram et 
al. 1997). These kinds of processes represent instances where the assumptions of DFT break 
down. Luckily, DFT uses a very general formalism for describing neural activity: differential 
equations. Thus, there is no obvious reason why the low-dimensional neural dynamics of DFT 
could not, in principle, be explicitly coupled to higher-dimensional neural processes involving 
individual spikes—also expressible in differential equations (e.g., Eliasmith 2013)—in cases 
where this greater level of detail is found to be necessary for understanding the relevant cogni-
tive process. 

Finally, it is important to note that the researcher using DFT must hypothesize which catego-
ries are represented by nodes and which continuous dimensions are represented by fields. With 
respect to DFT models of language, this leaves a crucial role for theoretical linguistics, which 
has unique insight into the categories and dimensions relevant for language. This approach con-
trasts with a “neural manifold” approach in which dimensions are derived directly from neural 
activation data (Langdon, Genkin & Engel 2023). In some cases, dimensions motivated by the-
ory have been found to coincide with dimensions of representation derived from measured neural 
activity, e.g., movement direction in fruit flies (Seelig & Jayaraman 2015) and mice (Chaudhuri 
et al. 2019). As methods improve for simultaneously recording from large numbers of individual 
cells in humans, researchers from linguistics and neuroscience may be able to use both perspec-
tives to triangulate the dimensions relevant for the neural dynamics of language. 
3. Dynamic Field Theory in linguistics. Since the inception of DFT in the early 1990s, most 
work in the framework has focused on aspects of action, perception, and cognition outside of 
language per se. However, in the last five years or so, a growing body of work has applied DFT 
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to understand a variety of phenomena related to speech and language.1 The continuous dimen-
sions of neural fields, as well as the nonlinear activation dynamics giving rise to instabilities, 
have proven particularly useful in unifying discrete and continuous aspects of linguistic represen-
tations. This section is divided into subsections based on the primary subfield relevant to each 
model; however, due to the inherent potential for unification across DFT models (discussed fur-
ther in Section 4), each model also has implications outside of its primary subfield. My aim in 
this section is to give a brief description of each model so that interested readers can refer to the 
original papers to learn more.  

3.1 SPEECH PRODUCTION. One of the first models of speech production in the framework of DFT 
was proposed by Roon & Gafos (2016). The model simulates a response-distractor task in which 
participants are visually cued to produce a particular syllable in the presence of an auditory dis-
tractor. Key findings from this paradigm are that participants are slower to start speaking when 
the distractor mismatches the target in a phonetic feature (Galantucci, Fowler & Goldstein 2009; 
Roon & Gafos 2015), and that articulation is gradiently pulled in movement directions associated 
with the distractor (Yuen et al. 2010). Roon & Gafos (2016) propose an architecture of coupled 
neural fields governing the constriction location and constriction degree targets for various artic-
ulators (lower lip, tongue tip, tongue back) as well as VOT. The intention to produce a particular 
syllable is modeled as a set of field inputs corresponding to the target values necessary to pro-
duce that syllable. For instance, when the simulated participant is cued to produce /t/, inputs 
influence the tongue tip fields towards a small constriction degree (full closure) located at the al-
veolar ridge, and an input influences the VOT field towards a high VOT (voiceless). When 
activation peaks stabilize in all of the fields, the locations of the peaks are assumed to determine 
the targets of articulatory movement. Moreover, the time it takes for activation peaks to form is 
taken as a proxy for response time in the task. Crucially, input from the perceived distractor also 
influences the same neural fields (for a review of evidence for interaction between perception 
and production, see Fowler 2016). This derives the two key results from the experimental task in 
the following way. When an input from the perceptual distractor mismatches an input for the tar-
get, lateral inhibition between the two activated field regions slows down the formation of an 
activation peak, leading to a slowed response time. Moreover, the distractor input can exert a 
gradient attractive influence on the location of the activation peak, exerting a gradient influence 
on the target of articulatory movement. Note that, in the model (and in the models described be-
low), differences between discrete categories (e.g., /t/ vs. /d/) are modeled as continuous 
differences between field input distributions (e.g., centered on a high vs. a low VOT value). The 
nonlinear dynamics of lateral neural interaction allows the discrete selection of one category over 
another on each trial. At the same time, temporal continuity allows the derivation of gradient re-
sponse time predictions, and feature continuity allows the derivation of gradient articulatory 
predictions. In this way, discreteness and continuity coexist.  

 
1 Some models in linguistics have utilized continuous fields of possible gestural target values, but are otherwise out-
side of the neural framework of DFT. For instance, Tilsen (2019) and Kim & Tilsen (2025) blend gestural 
intentions—modeled as distributions—through summation, in order to model effects related to simultaneously active 
supralaryngeal (Tilsen 2019) or laryngeal (Kim & Tilsen 2025) gestures; Gafos & Kirov (2009) model long-term 
change in phonetic representations via updating of distributions representing long-term memories of phonetic tar-
gets. Since these models do not incorporate the nonlinear neural dynamics of DFT that give rise to instabilities 
through lateral interaction, they are outside the scope of this review.  
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A number of subsequent studies have explored the potential for input interaction in speech 
target fields to explain a variety of phenomena. For instance, Stern et al. (2022) model the trace 
effect in voicing errors (see Section 1.1) as resulting from the interaction of inputs to a VOT 
planning field. In this model, two discrete inputs corresponding to the intended and errorful in-
tentions can lead to a single activation peak that is intermediate between the two intentions. Stern 
& Shaw (2023a) extend this model to capture the contrastive hyperarticulation effect in non-
errors by introducing an inhibitory input (cf. Tilsen 2019) corresponding to the minimal pair 
competitor which repels the activation peak away from the competitor. In this way, both trace 
effects in errors and contrastive hyperarticulation in non-errors can be understood as arising from 
variation in a single parameter: the polarity of input (excitatory or inhibitory) from a competitor 
category. Stern & Shaw (2023b) show how input polarity can be derived (rather than stipulated) 
from the coupling dynamics between neural fields representing articulatory targets (voicing, con-
striction location, constriction degree) and neural nodes representing lexical items. This model 
demonstrates that response times and articulatory targets are affected not only by the number of 
phonological neighbors in the lexicon (neighborhood density), but also by the particular way that 
those neighbors are coupled to overlapping phonetic dimensions, which may underlie the appar-
ently conflicting set of results bearing on phonological neighborhood density effects. Finally, 
Pintado-Urbanc (2025, this issue) models gradient effects of bilingual code-switching on VOT 
via the interaction of inputs from the two languages of a bilingual speaker. In this model, the dis-
tinct languages of a bilingual speaker interact in a shared neural field representing VOT targets. 
Moreover, dominance-based asymmetries in the phonetic effects of code-switching (Olson 2013) 
arise from differences in the strength of input from each language based on relative frequency of 
use, by analogy with the inverse frequency effect in syntactic priming (e.g., Ferreira 2003).  
3.2 PHONOLOGY. Other models have linked the real-time neural dynamics of speech production 
to qualitative patterns typically addressed in the subfield of phonology. Chaturvedi & Shaw 
(2025) model tonal downstep in Bimoba, a Gur language spoken in Ghana (Snider 1998), 
through the interaction of inputs to a neural field governing pitch targets. In particular, a combi-
nation of inputs corresponding to high tone, low tone, and low register, in a particular temporal 
sequence, derive the phonological downstep pattern. In the model, the temporal sequencing of 
tones is implemented via a condition of satisfaction mechanism (Sandamirskaya & Schöner 
2008), in which perception of an achieved target triggers inhibition of the field location associ-
ated with that target, and excitation of the field location associated with the next target, 
facilitating rapid transitions between movement targets. Shaw (2025) presents a neural field 
model governing glottal width targets which derives a phonological typology of voicing in 
/CVCV/ sequences, where both consonants are underlyingly voiceless. Given the same set of in-
puts to the neural field, three distinct output patterns are possible—faithful voicing contour, 
vowel devoicing, or intervocalic voicing—depending on the timing of inputs to the field. In this 
model, input timing is derived from an oscillator-based clock representing moras. Both 
Chaturvedi & Shaw (2025) and Shaw (2025) represent two kinds of advancements in DFT mod-
eling of speech and language. First, neural field activation dynamics are explicitly coupled to 
articulatory movement dynamics (cf. Kirkham & Strycharczuk 2024; Kim & Tilsen 2025), so 
that neural fields autonomously drive movement of articulators. Second, the timing of field in-
puts is derived, rather than stipulated: in Chaturvedi & Shaw (2025), via the condition of 
satisfaction; in Shaw (2025), via an oscillator-based timing mechanism. Both models demon-
strate how the gradient temporal details of activation peak stabilization and dissipation can lead 
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to categorically distinct patterns in articulation, typically described as phonological, despite the 
underlyingly continuous state space.  

Other DFT models have addressed change in phonological representations over a timescale 
longer than individual utterances. Shaw & Tang (2023) model the phenomenon of “leaky pros-
ody” (Tang & Shaw 2021), whereby words exhibit phonetic characteristics of the prosodic 
contexts in which they are typically produced, even when produced in other contexts. In the 
model, a neural field governing pitch targets is simultaneously influenced by inputs from lexical, 
tonal, and prosodic intentions, which jointly determine the location of the activation peak (pitch 
target) during a given utterance. Each time an activation peak forms, it contributes a small update 
to the field location of the lexical input (cf. Gafos & Kirov 2009), i.e., the long-term phonetic 
memory of the word (Pierrehumbert 2002). Since each activation peak bears some influence 
from the prosodic input, each lexical input takes on characteristics of the prosodic inputs that it 
tends to co-occur with. In this way, the content of categorical knowledge (inputs corresponding 
to lexical items) changes gradiently over a slow timescale as the result of many individual utter-
ance events. Kirkham & Strycharczuk (2024) utilize a similar input-updating mechanism to 
model a long-term phonological change from a vowel monophthong to a diphthong. In their 
model, two inputs influence a neural field governing tongue body constriction location. The tim-
ing of the inputs is controlled using an oscillator, and activation peaks drive articulatory 
movement via coupling between neural and articulatory dynamics (cf. Chaturvedi & Shaw 2025; 
Shaw 2025). To produce a monophthong, both inputs have similar locations in the field, so that 
there is no transition between vowel targets. To produce a diphthong, each input has a different 
location in the field so that the tongue body moves to a different location when the second input 
creates an activation peak. To model long-term change from a monophthong to a diphthong, they 
simulate two speakers interacting with each other, one with a set of inputs corresponding to a 
monophthong, and one with a set of inputs corresponding to a diphthong. Each time that the 
monophthongal speaker perceives a diphthongal target, their input distributions update to be 
slightly more diphthongal, driving long-term convergence towards the diphthongal speaker.   
3.3 LEXICAL SEMANTICS. Some work in the DFT framework has addressed the lexical semantics 
of spatial relation terms like above or to the left of, as well as perceptual descriptors like red or 
big. Richter et al. (2021) model the meaning of each term as a coupling relation between a neural 
node representing the lexical item, and neural fields representing relevant continuous dimen-
sions. For instance, the node corresponding to above is coupled to the upper region of a neural 
field representing the spatial relation between objects, and the node corresponding to red is cou-
pled to the red region of a neural field representing the spectrum of visible color. The model, 
consisting of a network of coupled nodes and fields, is able to autonomously search a visual 
scene for a target object. Stern & Piñango (2024) extend the notion of lexical meaning as node-
field coupling to semantic dimensions underlying lexical polysemy. In particular, polysemy is 
understood as arising from a wide distribution in the coupling pattern, such that the same lexical 
item can elicit a wide range of possible interpretations along the relevant dimensions. Using the 
English lexical item have as a test case, this model captures the influence of preceding context on 
lexical interpretation via the persistence through time of neural field activation states. Bhat, 
Spencer & Samuelson (2022) combine the real-time dynamics of word interpretation with the 
long-term dynamics of word learning in the Word-Object Learning via Visual Exploration in 
Space (WOLVES) model. As the model autonomously searches a visual scene, it also learns to 
associate attended objects with perceived words via the strengthening of synaptic connections 
that couple these representations to each other. 
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3.4 SYNTAX. Sabinasz, Richter & Schöner (2023) extend the model of Richter et al. (2021) to 
nested noun phrases which combine multiple lexical items in a syntactic structure like the small 
tree to the left of the big tree or the big tree to the left of the lake and to the right of the house. 
This model offers a solution to the “problem of 2”—in which a single concept has multiple sim-
ultaneous but distinct instantiations—and the “massiveness of the binding problem”—in which a 
single concept can participate in multiple relations (Jackendoff 2002)—through “index” fields 
which dynamically bind lexical items to each other. Kati et al. (2024) introduce another set of ex-
tensions to this model in order to address negation and truth value judgment. By adding a 
network of six coupled neural nodes, this model is able to evaluate the truth of true affirmative 
phrases, false affirmative phrases, true negated phrases, and false negated phrases. The model 
also mirrors empirical patterns in human response times across these conditions.  
4. Towards a neural dynamic theory of language. The models reviewed in Section 3, taken to-
gether, represent a unified perspective on human language. Language behavior is constituted by 
activation patterns across neural populations which drive production and comprehension; the dy-
namics of these activation patterns are formalized in differential equations. Linguistic knowledge 
is constituted by patterns of synaptic connectivity within and between neural populations; synap-
tic connections are formalized as coupling between the differential equations describing neural 
activation. Since DFT uses only one language of description—differential equations—there is no 
need for “translation” across “interfaces”. Rather, language is a single dynamical system formal-
izable as a set of coupled differential equations. The system is defined in a continuous state 
space, but it exhibits discrete, categorical behavior because of nonlinearity in the dynamics. The 
models reviewed above each contain different components because they were built to address a 
particular set of phenomena in language. However, each of these models should be viewed as a 
component of a single architecture of language. This architecture can really be built, piece by 
piece, by slotting models together through coupling of the relevant differential equations. For in-
stance, the WOLVES model (Bhat, Spencer & Samuelson 2022) is the result of slotting together 
the word-object learning model (WOL: Samuelson et al. 2011) and the visual exploration in 
space model (VES: Schneegans, Spencer & Schöner 2016) in this way. Ultimately, a DFT archi-
tecture for language would be simultaneously a model of processing, knowledge, and learning. 
Each of these empirical domains can be studied as different timescales of evolution in the same 
model, which is a model of a single brain. As a final point, while I have emphasized here the 
continuous representations of neural fields, the general success of research in linguistics to date 
suggests that discrete representations are a crucial component of linguistic knowledge and pro-
cessing. As we continue to build and refine a neural dynamic architecture of language, we are 
likely to find that neural nodes, coupled to each other through synaptic projection, play a funda-
mental role. However, we are also likely to find that continuous representations play important 
roles in domains previously conceptualized as categorical, like lexical semantics (e.g., Stern & 
Piñango 2024). 
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