Nominative subjects of infinitives in Hungarian subject-control predicates:
Postsyntactic copying and the overt realization of PRO

Kevin Kwong*

Abstract. In Hungarian, the focused subject of the infinitival complement of a subject-control verb appears as a pronoun or lexical DP in nominative case. I propose that this nominative form realizes PRO at PF, but does not exist at Syntax, where PRO is caseless. PRO is overtly realized by postsyntactic copying of the ϕ-feature of case (and other material) from the controlling nominative matrix subject.

Keywords. Hungarian; infinitive; control; focus; case; agreement; PF; copying

1. Introduction. In this paper, I provide a PF-driven account of how the subject (S) of the infinitival complement of a Hungarian subject-control verb (e.g., akar ‘want’, szeret ‘love’) surfaces in nominative case when focused. At Syntax, the infinitival S is caseless PRO controlled by the nominative matrix S. At PF, focused PRO is overtly realized as a nominative pronoun or lexical DP by copying ϕ-values for person and number, the ϕ-feature of case, and syntactic structure from the matrix S. Section 2 presents the basic data; §3 compares my account to other approaches; §4 introduces assumptions about DP structure; §5 examines the derivation at Syntax; §6 examines copying and deletion at PF; §7 extends to clausal climbing scenarios; §8 explores non-control predicates; and §9 concludes the paper.

2. Data. The subject-control construction with non-focused PRO is exemplified in (1–3).

1. Én-∅/proj nem akar-l-ak-∅ [le terhel-ni PROj téged-∅]
 1SG-NOM not want-2.O-1.S-SG.S down burden-INF 2SG-ACC
 ‘I don’t want to burden you.’

2. A fiú-k-∅ j nem akar-já-∅-k [fel olvas-ni PROj a vers-∅-et]
 ‘The boys don’t want to read out the poem.’

3. A fiú-k-∅ j nem akar-∅-na-k [fel olvas-ni PROj egy ilyen vers-∅-et]
 the boy-PL-NOM not want-0.O-3.S-PL.S up read-INF a such poem-SG-ACC
 ‘The boys don’t want to read out such a poem.’

The matrix verb agrees in the ϕ-features of person (π) and number (#) with the matrix S in nominative case (κ). The pronominal S is pro-dropped (1), unless an operator feature such as contrastive topic forces its pronunciation. The matrix verb also exposes the π of the infinitive’s accusative direct object (O) in “long-distance” O-agreement. Hungarian O-agreement involves person but not definiteness itself, since the semantic distinction of definite vs. indefinite is grammaticalized into the presence vs. absence of π on a nominal’s D (Bárány 2018). In (2), the infinitival O is a definite DP with 3π, but in (3), it is an indefinite NumP with 0π (without D to host π).

* Many thanks to my consultants for their judgments, and Miljo Despić, Eszter Ótott-Kovács, Carol Rounds, John Whitman, and audiences at ICSH-15 and LSA-96 for discussion. Any errors are my own. Author: Kevin Kwong, Cornell University (kk936@cornell.edu).

1 Non-Leipzig abbreviations: 0 no person; C complementizer; CT contrastive topic; CV coverb; D determiner; Distr distributive; i interpretable; M mood; N noun; NCT non-contrastive topic; NN no number; NNe non-neutral; Num numeral; O direct object; Pred predication; PSM possessum; PSR possessor; Q quantifier; S subject; T tense; u uninterpretable; V verb; κ case; π person; # number.
When the O is 0π, default agreement still occurs and is exponed by $-\varnothing$. The infinitival S is PRO and stays silent when non-focused. The infinitive does not expone the ϕ-features of its S or O.

Focused PRO (e.g., with csak ‘only’) surfaces as an overt nominative DP in the infinitival focus position left-adjacent to the infinitive (which may have a covert, e.g., fel). PRO may be realized as a plain pronoun, with a plain pronoun (4) or lexical DP (5) matrix S; as a completed pronoun, with a comp pronoun matrix S (6); or as a lexical DP, with a lexical DP matrix S (7):

 a. pro_1 nem akar-ja-∅-k [csak ók-∅ fel olvas-ni a vers-∅-et]
 not want-3.0-3.S-PL.S only $3PL-NOM$ up read-INF the poem-SG-ACC
 ‘They don’t want it to be the case that only they read out the poem.’
 b. $[\text{NegP} pro_1$ nem akar-ja-∅-k]
 not want-3.0-3.S-PL.S
 $[CP \text{ csak } PRO \Rightarrow \text{ők-∅} \text{ fel olvas-ni a vers-∅-et }]$
 only $3PL-NOM$ up read-INF the poem-SG-ACC

(5) Focused PRO: plain pronoun. Matrix S: lexical DP. cf. (2)
 a. A fiú-k-∅-j nem akar-ja-∅-k [csak ők-∅ fel olvas-ni a vers-∅-et]
 the boy-PL-NOM not want-3.0-3.S-PL.S only $3PL-NOM$ up read-INF the poem-SG-ACC
 ‘The boys don’t want it to be the case that only they read out the poem.’
 b. $[\text{NegP} A \text{ fiú-k-∅-j}$ nem akar-ja-∅-k]
 the boy-PL-NOM not want-3.0-3.S-PL.S
 $[CP \text{ csak } PRO \Rightarrow \text{ők-∅} \text{ fel olvas-ni a vers-∅-et }]$
 only $3PL-NOM$ up read-INF the poem-SG-ACC

 a. Szeret-né-∅-n-k [csak $\text{mi-∅ nyelvész-ek-∅}$ kap-ni magasabb fizetés-∅-t]
 love-COND-0.0-1.S-PL.S only $1PL-NOM$ linguist-PL-NOM get-INF higher salary-SG-ACC
 ‘We would like it to be the case that only we linguists get a higher salary.’
 b. $[\text{NegP} Szeret-né-∅-n-k]
 love-COND-0.0-1.S-PL.S $1PL-NOM$ linguist-PL-NOM
 $[CP \text{ csak } PRO \Rightarrow \text{mi-∅ nyelvész-ek-∅} \text{ kap-ni magasabb fizetés-∅-t }]$
 only $1PL-NOM$ linguist-PL-NOM get-INF higher salary-SG-ACC

(7) Focused PRO: lexical DP. Matrix S: lexical DP. cf. (2)
 a. $\%$ Nem akar-ja-∅-k [csak a fiú-k-∅ fel olvas-ni a vers-∅-et]
 not want-3.0-3.S-PL.S only the boy-PL-NOM up read-INF the poem-SG-ACC
 ‘The boys don’t want it to be the case that only they read out the poem.’
 b. $\%$ $[\text{NegP} Nem akar-ja-∅-k]
 not want-3.0-3.S-PL.S the boy-PL-NOM
 $[CP \text{ csak } PRO \Rightarrow \text{a fiú-k-∅} \text{ fel olvas-ni a vers-∅-et }]$
 only the boy-PL-NOM up read-INF the poem-SG-ACC

In infinitival [Spec,FocP], all speakers allow pronoun realizations of PRO, but only some allow lexical DP ones (Szabolcsi 2009; Szécsényi 2018). I will refer to the pronoun-only speakers as Group A and those accepting lexical DPs as Group B. Similar pronominal foci are attested crosslinguistically (e.g., Italian; Szabolcsi 2009), but lexical foci seem unique to Hungarian.
3. **Proposal.** I will analyze the data according to the Y-model in the framework of Distributed Morphology (Embick & Noyer 2007):

The infinitival S is underlyingly caseless \textit{PRO} at Syntax (4b, 5b, 6b, 7b). At PF, non-focused \textit{PRO} is silent, but focused \textit{PRO} is overtly realized, since focused elements must be stressed, and only overt elements can be stressed. To derive the surface forms (4a, 5a, 6a, 7a), the proposed morphological operations of \textit{focal copying} and \textit{focal deletion} apply to the material transferred to PF. In focal copying, features and structure are copied from the matrix S to focused \textit{PRO}. In focal deletion, a comp pronoun (6b) or lexical DP (7b) matrix S is deleted, if identical to \textit{PRO}’s realization. The nominative form of the focused infinitival S exists at PF only, not at Syntax.

In contrast, other analyses identify the focused infinitival S as a non-\textit{PRO} pronoun or lexical DP at Syntax; these include long-distance and multiple S-agreement (Szabolcsi 2009), backward control (Bartos 2006), and movement theory of control (MTC) (Szécsényi 2017, 2018). MTC is the most developed approach to date that covers the variation between Groups A and B, and is applied below to (5a) and (7a):

At Syntax, in (9) and (10), the infinitival S-DP \textit{a fiúk} merges as the complement to a \textit{csak}P and obtains a \(\theta\)-role in infinitival [Spec,\(\nu\)P], but its \(\kappa\) is unvalued. Moving via infinitival [Spec,FocP] to matrix [Spec,\(\nu\)P], it obtains a second \(\theta\)-role and agrees with matrix Asp for NOM \(\kappa\). In (10), the non-topical S-DP does not continue to matrix [Spec,TopP]. At PF, only the copy of the S-DP in infinitival [Spec,FocP] emerges, as a lexical DP. Only Group B accepts (10). In (9), the topical S-DP reaches matrix [Spec,TopP]. At PF, the copy of the S-DP in infinitival [Spec,FocP] is reduced to a pronoun and uttered with the lexical DP copy in matrix [Spec,TopP]. Both groups accept (9).

MTC faces many conceptual and empirical criticisms (Landau 2013), though these are mostly non-specific to Hungarian or the focused infinitival S. As an alternative, my PF-driven account maintains the traditional view of subject-control constructions at Syntax: the infinitival S is \textit{PRO}; control is forward only; agreement is simple (one probe per goal) and licenses structural \(\kappa\). It might also accommodate more easily the idea that Hungarian O-agreement targets person rather than definiteness (Bárány 2018). In MTC, the non-\textit{PRO} infinitival S merges in infinitival [Spec,\(\nu\)P] with unvalued uninterpretable \(\kappa\) that is still unvalued in infinitival [Spec,FocP]. As an active goal...
the, the infinitival S seems to intervene in “long-distance” O-agreement in π between matrix v and the infinitival O in infinitival [Spec,VP]. Caseless PRO, in contrast, is never an intervener. In MTC, intervention by the non-PRO S might be avoided if O-agreement targeted definiteness (a non-ϕ-feature) rather than π (a ϕ-feature) (cf. Coppock & Wechsler 2012, Szabolcsi 2009, Szécsényi 2017). Infinitival v would license ACC κ to the infinitival O. Matrix v would agree in definiteness with the infinitival O as the closest ACC-bearing goal, but ignore the non-PRO infinitival S because it lacks ACC κ. Nonetheless, definiteness-based characterizations of O-agreement (which concentrate on data with a 3π O) concede that person-based O-agreement does arise in the exception of a 1SG S with a 2π O, in (1). In this combination, the focused infinitival S is also realized as an overt 1SG pronoun (11), like its 3PL counterpart in (4). For this paper, I adopt a unified treatment of all Hungarian O-agreement as person-based (Bárány 2018).

(11) a. \textit{proj} nem \textit{akar-łak-∅} [csak \textit{én-∅} le terhel-ni téged-∅]
not want-2.O-1.S-SG.S only 1SG-NOM down burden-INF 2SG-ACC
‘I don’t want it to be the case that only I burden you.’ cf. (1)

b. \textit{proj} nem \textit{akar-łak-∅} [csak PRO ⇒ \textit{én-∅} le terhel-ni téged-∅]
not want-2.O-1.S-SG.S only 1SG-NOM down burden-INF 2SG-ACC

4. DP structure. Before examining derivations at Syntax and PF, I will profile the structures of the various subject DPs from (4b–7b), showing their lexical and featural content at Spellout:

(12) PRO (13) Plain pronoun (14) Comp pronoun (15) Lexical DP
(4b–7b) pro (4b) mi nyelvészek (6b) a fiúk (5b)

\textit{PRO} and plain pronouns contain only functional morphemes (feature bundles), while comp pronouns and lexical DPs also include lexical morphemes (roots); at PF, vocabulary items (VIs) are inserted for the morphemes. \textit{PRO} (12) is a bound minimal pronoun born with unvalued interpretable π and # (but no κ), which are valued by copying from the coindexed matrix S at PF (Heim 2008, Landau 2015). A \textit{plain pronoun} (13) originates with π, #, and κ. π and # are interpretable and already valued, while uninterpretable κ becomes valued by agreement at Syntax. A \textit{comp pronoun} (14) resembles a plain pronoun, except that D takes a NumP complement with a root in N. When D agrees, its NOM value for κ percolates to Num’s κ. In a \textit{lexical DP} (15), D also takes a NumP, but D here always has 3π and is exponed at PF as the definite article a. In all DPs, D can host non-ϕ, OPERATOR (OP) features, e.g., topic TOP, focus FOC. Every \textit{PRO} in (4b–7b) has FOC. In (5b), the lexical DP matrix S has TOP, while its counterpart in (7b) lacks TOP. In a distinction relevant in this paper only to plain pronouns, silent \textit{pro} in (4b) is a non-contrastive topic NCT, while overt \textit{én} in (1) is a contrastive topic CT.

5. Syntax. A derivation at Syntax is illustrated for this sentence:

(16) [\textit{TopP} A fiú-k-∅] [\textit{NegP} nem [\textit{NNP} \textit{akar-já-∅-k}] [\textit{DP} ⟨a fiúk⟩]

[\textit{CP} [\textit{FocP} csak PRO ⇒ \textit{ők-∅}] [\textit{NNP} fel olvas-ni [\textit{DP} ⟨csak PRO⟩ a vers-∅-et]]
only 3PL-NOM up read-INF the poem-SG-ACC

‘The boys don’t want it to be the case that only they read out the poem.’ = (5b)
The lowest phase in Hungarian is AspP. The next phase is MP in neutral clauses, but Non-Neutral Phrase (NNeP) in non-neutral ones, below NegP/FocP (cf. É. Kiss 2008b, 2008c). CP is the highest phase. The basic loci of agreement and structural κ-assigners are finite Asp (NOM to S), and v (ACC to O). Probes on κ-assigners agree only with goals having unvalued uninterpretable κ, and vice versa. The PRO infinitival S-DP merges as the complement to a csakP in infinitival [Spec,vP], which then moves to infinitival [Spec,FocP]. Lacking any uninterpretable feature, PRO is never a goal for Agree; moreover, infinitival Asp under subject-control verbs is FULLY ϕ-DEFECTIVE (without π or # probes). The matrix S merges in matrix [Spec,vP]. Finite Asp is ϕ-COMPLETE (with π and # probes); it agrees with and assigns NOM κ to the matrix S, which moves to matrix [Spec,TopP].

The infinitival O merges in infinitival [Spec,VP]. “Long-distance” O-agreement actually reduces to three local agreements: infinitival O–infinitival v; infinitival v–infinitival C; infinitival C–matrix v (Kwong 2021; cf. Szécsényi & Szécsényi 2017). Infinitival v and C serve as probes and then goals. The infinitival O agrees in π with infinitival v for ACC κ. The uπ on v is not deleted immediately after valuation, because v is PARTIALLY ϕ-DEFECTIVE (with only π). v raises cyclically to NNe and agrees as a goal in π with infinitival C, and the uπ on v is deleted upon completion of the CP phase. Infinitival C then agrees as a goal in π with matrix v for ACC

2 I abandon the assumptions from Kwong (2021:391) that infinitival Asp here is ϕ-complete (with π and #); that default values are inserted for these features, without agreement with PRO; and that infinitival C has iπ (not uπ).
\(\kappa\), and the \(u\pi\) on C is deleted upon completion of the matrix Asp phase. Caseless PRO in infinitival [Spec,FocP] does not intervene in any agreements. Postsyntactically, \(v\) is obliterated in the context of Inf, so the \(v\)-value from the infinitival O is exponed not on infinitival but matrix \(v\).

6. PF. I now examine the overt realization of focused PRO. At PF, before Vocabulary Insertion and Linearization, morphological operations can manipulate the hierarchical structures from Syntax. The three operations relevant here are COINDEXICAL PHI-VALUE COPYING, FOCAL COPYING (FoCop), and FOCAL DELETION (FoDel).

6.1. COPYING. In COINDEXICAL PHI-VALUE COPYING, which applies to any PRO, values are copied from the coindexed matrix S for unvalued \(\phi\)-features already in PRO. FoCop is limited to focused PRO, and can copy two further kinds of material not yet in PRO: entire \(\phi\)-FEATURES (from the matrix S’s D) and syntactic STRUCTURE (from that D’s complement). Coindexation enables non-local copying from the matrix S (source) to PRO (target). Coindexical copying contrasts with con cordial copying from the closest dominating or c-commanding source to the target (cf. Norris 2017, Den Dikken 2018). Table 1 summarizes the properties of the morphological operations employed for different realizations of focused PRO:

<table>
<thead>
<tr>
<th>Ex.</th>
<th>Matrix S</th>
<th>Realization of focused PRO</th>
<th>Phi-value copying</th>
<th>FoCop</th>
<th>Totality of FoCop</th>
<th>Copied morpheme types</th>
<th>FoDel of matrix S</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4)</td>
<td>plain pronoun [OP]</td>
<td>plain pronoun</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(36)</td>
<td>comp pronoun [OP]</td>
<td>plain pronoun</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(5)</td>
<td>lexical DP [OP]</td>
<td>plain pronoun</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(6)</td>
<td>comp pronoun</td>
<td>comp pronoun</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(7)</td>
<td>lexical DP</td>
<td>lexical DP</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 1. Properties of realization options for focused PRO

All \(\phi\)-values, \(\phi\)-features, and structures are copiable, while OP-features (e.g., TOP (5)) are uncopiable. Regarding morpheme types, \(\phi\)-value and \(\phi\)-feature copying is featural (involving features), while structure copying is featural-radical (involving features and roots). Total copying of all copiable material from source to target is distinguished from partial copying of a proper subset of copiable material. \(\phi\)-value copying is always total, while FoCop is total or partial. In (4), FoCop is total; the copied \(\phi\)-feature of \(\kappa\) exhausts the plain pronoun matrix S’s copiable material. In (5), it is partial, since, besides the copied \(\kappa\), the NumP complement structure in the lexical DP matrix S is theoretically copiable but not copied for another reason (OP on the matrix S).

Coindexical \(\phi\)-value copying always occurs for unvalued \(\pi\) and \# in PRO, whether focused or not. For example, 3 and PL are copied in (5b) from the matrix S’s D to PRO’s D:

(18) **Matrix S** (lexical DP) (5b)

![Diagram]

(19) **PRO**: \(\phi\)-value copying from (18)

![Diagram]

3 FoCop expands the power of Embick & Noyer’s (2007) FEATURE COPYING to permit structure copying, but its application is restricted to the scenario of a matrix S coindexed with focused PRO.

4 The focused PRO in infinitival [Spec,FocP], and matrix S in matrix [Spec,vP] belong to different Spellout domains (FocP of infinitival CP phase, and PredP of matrix Asp phase, respectively). Instead of a symmetric view of phases, in which all PF-operations on a phase must finish before the next phase reaches PF, I adopt an asymmetric view in which PRO’s index and FOC feature can delay the completion of PF-operations, so that PRO remains operationally accessible until at least after its controller is transferred (cf. Herbeck 2015:85 on phase suspension).
\(\phi\)-value copying alone cannot make \(\text{PRO}\) visible to Vocabulary Insertion, so the FOC on its D triggers FoCop. Which material undergoes FoCop (\(\phi\)-features, structure) and which form \(\text{PRO}\) takes (plain pronoun, comp pronoun, lexical DP) depend on whether the matrix \(\text{S}\) has OP. When the matrix \(\text{S}\) is a comp pronoun or lexical DP, \(\text{PRO}\) fully replicates such DPs only if the matrix \(\text{S}\) is OP-less, e.g., in (6, 7), where it lacks even TOP. If the matrix \(\text{S}\) is OP-ful, \(\text{PRO}\) emerges as a plain pronoun, e.g., in (5) and (36), where the matrix \(\text{S}\) has TOP and its own FOC, respectively. OP’s absence triggers only total and featural-radical FoCop (6, 7), while its presence triggers only partial and featural FoCop (5, 36). In other words, OP on a comp pronoun or lexical DP matrix \(\text{S}\) blocks FoCop of otherwise copiable structure, limiting it to \(\phi\)-features. If the matrix \(\text{S}\) is a plain pronoun (4), FoCop is total and featural, realizing \(\text{PRO}\) as a plain pronoun, regardless of OP.

At a minimum, after \(\phi\)-value copying, \(\phi\)-feature copying of \(\kappa\) must ensue so that \(\text{PRO}\) has the full set of \(\phi\)-features found on the matrix \(\text{S}\) (18). Note that any OP-features, such as TOP, are never copied to \(\text{PRO}\). If no further FoCop occurs, \(\text{PRO}\) surfaces as a plain pronoun (23), where D fissions into two heads, \(D_{\pi, \#}\) and \(D_{\kappa}\), on which VIIs (24) and (25) are inserted.\(^6\)

\begin{equation}
(23) \quad \text{\(\text{PRO}\): \(\phi\)-feature copying from (18)}
\end{equation}

To realize \(\text{PRO}\) as a comp pronoun (27), invoke FoCop for \(\phi\)-features (\(\kappa\)) and structure (NumP complement). Total and featural-radical FoCop is licensed when the comp pronoun matrix \(\text{S}\) is OP-less. In \(\text{PRO}\), D fissions into \(D_{\pi, \#}\) and \(D_{\kappa}\), while Num fissions into Num_{\#} and Num_{\kappa}:

\begin{equation}
(26) \quad \text{(comp pronoun) (6b)}
\end{equation}

\begin{equation}
(27) \quad \text{\(\text{PRO}\) to realization}
\end{equation}

\(^5\) See Herbec (2015) on how pragmatic features make \(\phi\)-features visible to Vocabulary Insertion for overt pronominal subjects of Spanish infinitives.

\(^6\) VI (24) is restricted to where a pronoun has \(\kappa\) (i.e., in the presence of \(D_{\kappa}\)), and D has FOC or CT. If D has none of these two OP-features (e.g., the matrix \(\text{S}\) with NCT in (4)), the elsewhere VI (20) below for \(\text{PRO}\) is inserted. Overt caseless pronouns do exist in Hungarian, but instead of a subject, they express an internal possessor, such as \(\delta\) (22a) inside \([\text{Spec}, \text{Poss}]\) of a possessive DP (22b). VI (21) applies only when the possessor DP’s D has the POS2 feature for referential identification (cf. Dékány 2021:184); it thus cannot apply to \(\text{PRO}\) (19) just after \(\phi\)-value copying.

\begin{equation}
(20) \quad [3, \text{PL, NOM}]\text{D} \leftrightarrow \emptyset (= \text{PRO})
\end{equation}

\begin{equation}
(21) \quad [3, \text{PL}]\text{D} \leftrightarrow \delta / \text{[POSS2]}\text{D}
\end{equation}

\begin{equation}
(22a) \quad \text{az \(\delta\) \text{bőrőndjei-k}}
\end{equation}

\begin{equation}
\text{‘the 3PL suitcase-PSM-PL-PSM-3PL-PSR ‘their suitcases’}
\end{equation}
To realize PRO as a lexical DP (29), copy the same material (κ and NumP complement) as for a comp pronoun. But VI (30), for the definite article a, is inserted on D in the context of a root, instead of VI (24) for a 3PL pronoun (cf. Herbeck 2015:243), since Hungarian prohibits 3π comp pronouns (Kenesei et al. 1998:269).

\[(28) \text{ Matrix S } \quad \text{(lexical DP) (7b)} \quad \Rightarrow \quad \text{PRO} \]

\begin{align*}
\text{DP} & \quad \text{csakP} \\
\text{D} & \quad \text{NumP} \\
[i\#: \text{PL}] & \quad \sqrt{\text{FIU}} \\
[i\#: \text{NOM}] & \quad \sqrt{\text{VERS}} \\
\end{align*}

\[(30) \quad [3]_D \leftrightarrow a / _ \{ \sqrt{\text{FIU}}, \sqrt{\text{VERS}}, \ldots \} \]

6.2. DELETION. The non-ϕ-content (in D’s complement) of a comp pronoun or lexical DP matrix S must surface once and only once in a derivation. FoDel is the obligatory deletion of the matrix S after total and featural-radical FoCop, when the matrix S and realized PRO are both comp pronouns (6) or lexical DPs (7). FoDel enforces economy, so the matrix S’s non-ϕ-content surfaces at most once. Since only PRO is OP-ful (with FOC), it prevails over the OP-less matrix S as the unique overt locus for such content. In contrast, FoDel does not apply after partial and featural FoCop. The matrix S is an OP-ful, lexical DP (5) or comp pronoun (36), and realized PRO is a plain pronoun. Non-deletion enforces visibility, so the matrix S’s non-ϕ-content surfaces at least once—on the OP-ful matrix S itself, since realized PRO expresses only ϕ-content.

There is no upper limit on how many times the matrix S’s ϕ-content can surface. FoDel never occurs after total and featural FoCop, where both the matrix S and realized PRO are plain pronouns. Instead of being deleted, the plain pronoun matrix S is silent by default as pro, but certain OP-features force its overt spellout alongside realized PRO, e.g., in (40).

With FoDel and OP-features in mind, I return now to the variation between Groups A and B in the lexical DP realization of PRO from (7):

\[(31) \quad \text{a. Group A} \]

\[
\begin{align*}
\text{TopP} & \quad \text{A fiúk-} \quad \text{NegP} & \quad \text{nem akar-já-} \\
\text{the boy-PL-NOM} & \quad \not \text{want-3.O-3.S-PL.S} \\
\text{NegP} & \quad \text{a fiúk} \\
\end{align*}
\]

\[
\begin{align*}
\text{FocP} & \quad \text{csak PRO} \Rightarrow \text{a fiúk-} \\
\text{only the boy-PL-NOM} & \quad \text{up read-INF} \\
\text{PRO} & \quad \text{a vers-} \quad \text{the poem-SG-ACC} \\
\end{align*}
\]

\[
\text{‘The boys don’t want it to be the case that only they read out the poem.’}
\]

The variation arises because Group A’s construal of (7) generates a clash between FoDel and overt spellout of a lexical DP topic. (31) presents the groups’ different construals. For Group B (31b), the lexical matrix S is non-topical and thus OP-less. FoDel of the matrix S is unproblematic, because it does not need to surface. Group A (31a), however, expects that the lexical matrix S has TOP and moves to [Spec,TopP]. At PF, the attempted lexical DP realization of PRO is illicit, because the resultant FoDel of the matrix S precludes the lexical DP topic from surfacing.
Szécsényi (2017:47) observes that the lexical DP realization of PRO improves for some though not all Group A speakers, if a frame-setting adverbial serves as the matrix topic in (32). Since the lexical matrix S is not the topic and does not have to surface, FoDel is unproblematic. The speakers who still reject (32) do so because they insist on the topichood of the lexical matrix S, which they can express only through the strategy in (5), where PRO is realized as a plain pronoun.

The matrix S must be overt if it has its own FOC feature. (33) and (34) demonstrate the ungrammatical and grammatical ways to focus both the matrix S and infinitival S. In (33), the lexical matrix S is actually unpronounceable, having been deleted after the lexical realization of PRO. But if PRO is realized a pronoun, the lexical matrix S is not deleted, surfacing in (34). A comp pronoun matrix S behaves just like its lexical DP counterpart with double focus:

The matrix S can be a quantificational pronoun with obligatory OP-features, e.g., senki ‘nobody’ (37) with DISTR and NEG in [Spec,DistrP] (É. Kiss 2008a). Like the OP-ful comp pronoun and lexical DP, it has a complemented D, triggers partial and featural FoCop to realize focused PRO, and resists FoDel. Senki lacks π, so only SG for #, and NOM κ are copied; PRO’s π is default-valued as 0. OP-features on D are uncopyable, so PRO surfaces as a plain pronoun, not senki:

a. Senki-∅-∅j nem akar-t-∅-∅∅ [csak ∅j men-ni bus(z)-szal]
 nobody-SG-NOM not want-PST-∅-0-∅∅.S-SG.S only 0SG-NOM go-INF bus-INST
 ‘Nobody wanted to be the only one who takes the bus.’ (Szabolcsi 2009:271, reglossed)

b. {DistrP Senki-∅-∅j, NegP nem akar-t-∅-∅∅ [vagy ∅j men-ni bus(z)-szal]}
 [vagy ∅j men-ni bus(z)-szal]
7. Clausal climbing. I will extend the PF-driven account to clausal climbing scenarios, where all speakers can realize PRO as a lexical DP or pronoun in matrix [Spec,FocP]. In the examples so far, PRO moves only as high as infinitival [Spec,FocP], because a matrix non-neutral operator, Neg, blocks PRO from climbing to matrix [Spec,FocP]. This is the otherwise natural destination for a focused constituent from the infinitival CP, but becomes unavailable if movement there would induce a scopal clash between two non-neutral operators (Szécsényi 2017).

(41) PRO in matrix [Spec,FocP]. Lexical DP at PF. (Szécsényi 2017:48, reanalyzed)
 a. Csák a fiú-k-∅j szeret-né-∅-ne-k [este buliz-ni]
 only the boy-PL-NOM love-COND-0.0-3.S-PL.S evening party-INF
 ‘The boys would like it to be the case that only they party in the evening.’
 b. [FocP Csák PRO⇒a fiú-k-∅j] szeret-né-∅-ne-k [iP a fiú-k-∅j]
 only the boy-PL-NOM love-COND-0.0-3.S-PL.S the boy-PL-NOM
 [CP [FocP ⟨csák PRO⟩] este buliz-ni [iP ⟨csák PRO⟩]]] evening party-INF

(42) PRO in matrix [Spec,FocP]. Plain pronoun at PF. (Szécsényi 2018:294, reanalyzed)
 a. A fiú-k-∅j csák 6k-∅j akar-∅-na-k [este buliz-ni]
 the boy-PL-NOM only 3PL-NOM want-0.0-3.S-PL.S evening party-INF
 ‘The boys want it to be the case that only they party in the evening.’
 b. [TopP A fiú-k-∅j] iP [FocP ⟨csák PRO⟩⇒6k-∅j] akar-∅-na-k [iP ⟨a fiúk⟩]
 the boy-PL-NOM only 3PL-NOM want-0.0-3.S-PL.S
 [CP [FocP ⟨csák PRO⟩] este buliz-ni [iP ⟨csák PRO⟩]]] evening party-INF

Without a matrix non-neutral operator in (41), PRO climbs to matrix [Spec,FocP] but reconstructs to the infinitival CP (where Binding Condition A is satisfied). The lexical matrix S is non-topical, so OP’s absence triggers total and featural-radical FoCop. PRO is realized as a lexical DP and the matrix S is deleted. Alternately, when the lexical matrix S is topical in (42), OP’s presence triggers partial and featural FoCop. PRO emerges in matrix [Spec,FocP] as a plain pronoun, and the lexical matrix S emerges in [Spec,TopP]. Note, however, that the surface forms in (41a) and (42a) are ambiguous. They could correspond to other structures at Syntax, (43) and (44), respectively.
in which the matrix S occupies matrix [Spec,FocP], while PRO remains in situ:

(43) [FocP Cskak a fiúk-∅ szeret-né-∅ ne-k [IP ⟨csak a fiúk⟩ [CP este buliz-ni [IP PRO]]]] only the boy-PL-NOM love-COND-0.0-3.S-PL-PL the evening party-INF ‘Only the boys would like to party in the evening.’ (Szécsényi 2017:48, reanalyzed)

(44) [TopP A fiúk-∅ [FocP csak ⟨a fiúk⟩ ⇒ űk-∅ akar-∅ na-k [IP ⟨csak a fiúk⟩] the boy-PL-NOM only 3PL-NOM want-0.0-3.s-PL-PL S] [CP este buliz-ni [IP PRO]]]] evening party-INF ‘Only the boys want to party in the evening.’ (Szécsényi 2018:294, reanalyzed)

In (43), the matrix S surfaces only as a focused lexical DP. In (44), the matrix S-DP originates as a lexical DP and supplies both the topic and focus, moving from [Spec,vP] to [Spec,FocP] and then [Spec,TopP]. At PF, the syntactic copy in [Spec,TopP] emerges as a lexical DP, while the copy in [Spec,FocP] is reduced to a pronoun; all other copies are deleted. Copies are chosen for pronunciation only after the entire derivation has been transferred to PF (Reintges 2007).

This choice obeys the same uniqueness condition proposed in §6.2 for the overt realization of PRO: the non-∅ content of a given lexical DP must surface once and only once in a derivation. If multiple syntactic copies must surface because they all have OP-features, then for visibility, the highest surfacing copy must express the non-∅ content (as a lexical DP), while for economy, any lower surfacing copy must express only the ∅-content (as a plain pronoun).

8. Non-control predicates. Here I will compare subject-control constructions (with a PRO infinitival S) and non-control constructions (with a non-PRO infinitival S). In the latter, the PF-realization of the focused infinitival S-DP does not rely on postsyntactic FoCop, but on the pronunciation of a preexisting copy already specified at Syntax with (near-)complete featural and radical information. Table 2 at the end of §8 summarizes the featural flavors of the heads responsible for agreement and case-licensing in the constructions.

I will firstly discuss raising, non-control constructions, with the matrix verb elkezd ‘begin’.

Derivation of (46)7

a. Infinitival CP

\[\begin{array}{c}
\text{Elkezd} \selects \text{only an infinitival CP argument, whose fully \(\phi\)-defective Asp is not a \(\kappa\)-assigner. The infinitival S thus raises from [Spec,}v\text{P} \text{to infinitival CP's phase edge, to agree with matrix Asp in } \pi \text{ and } \# \text{ for NOM } \kappa. The OP-less (non-topical, non-focused) lexical S-DP (45) surfaces in infinitival [Spec,CP] as a lexical DP, since this copy is the head of the movement chain and does not compete with any OP-ful copy for overt lexical spellout. The focused S-DP (46) stops in infinitival [Spec,}FocP\text{] en route to [Spec,CP]. At PF, the copy in [Spec,CP] is deleted, despite being the chain head, because it is non-topical (OP-less) and must yield overt lexical spellout to the focused (OP-ful) copy in [Spec,FocP]. The NOM value for } \kappa \text{ is copied at PF from the [Spec,CP] to [Spec,FocP] copy; this is the only postsyntactic copying required. In (47), the S-DP is both topic and focus. It ultimately reaches matrix [Spec,TopP] to surface as a lexical DP, while the copy in infinitival [Spec,FocP] is overtly pronominalized, after postsyntactic copying of NOM as in (46).}
\end{array}\]

As with a subject-control verb (17), “long-distance” O-agreement with a raising verb (48) reduces to three steps: infinitival O–infinitival v; infinitival v–infinitival C; infinitival C–matrix v. Several key differences arise. First, infinitival C lacks \(\kappa\). Second, a raising verb’s matrix v is not a \(\kappa\)-assigner, even though it agrees with infinitival C in \(\pi\). Accordingly, matrix v cannot agree with a goal bearing unvalued \(\kappa\), such as the infinitival S in infinitival [Spec,CP], which thus does not intervene in agreement between matrix v and infinitival C.

I turn now to non-raising, non-control constructions, with the matrix verb \textit{kell} ‘to be needed’.

7The surface linear order of the verbal suffixes in \textit{kezd-t-e-∅-∅} deviates from the hierarchical order of the functional heads \(V < v < \text{Asp}_\pi, \text{Asp}_\# < T\), because of Local Dislocation (Kwong 2021).
(49) Nem kell-∅-∅ [CP [MP fel olvas-ni(-u-k) [IP a fiú-k-nak, a vers-∅-et]] not be.needed-0.S-NN.S up read-INF(-3.S-PL.S) the poem-DAT the poem-SG-ACC 'It is not the case that the boys have to read out the poem.'

(50) Nem kell-∅-∅ [CP [FocP csak a fiú-k-nak] [NNep fel olvas-ni(-u-k) not be.needed-0.S-NN.S only DAT-3PL up read-INF(-3.S-PL.S) a fiú-k-nak a vers-∅-et the poem-SG-ACC] 'It is not the case that only the boys have to read out the poem.'

(51) a. A fiú-k-nak nem kell-∅-∅ [csak nek-ikj fel olvas-ni(-u-k) a vers-∅-et] the boy-PL-DAT not be.needed-0.S-NN.S only DAT-3PL up read-INF(-3.S-PL.S) the poem-SG-ACC 'It is not the case that only the boys have to read out the poem.' (cf. Szécsényi 2017:40)

b. [TopP A fiú-k-nak] [NegP nem kell-∅-∅ [CP [FocP csak a fiú-k-nak] ⇒ nek-ikj the boy-PL-DAT not be.needed-0.S-NN.S only DAT-3PL up read-INF(-3.S-PL.S) a fiú-k-nak a vers-∅-et the poem-SG-ACC]]

(52) Derivation of (50)

a. Infinitival CP

b. Matrix CP

Like raising verbs, kell selects only an infinitival CP argument, but infinitival Asp is φ-complete, agreeing in π and # with and assigning dative κ to the non-PRO S in [Spec,vP]. The non-topical, non-focused S (49) stays there. Exponence of agreement on the infinitive is optional for an overt S (Szécsényi 2017). The focused lexical S (50) lands in infinitival [Spec,FocP]. In (51), the lexical S-DP is additionally a topic that continues to matrix [Spec,TopP] to emerge there as a lexical

8 In Kwong (2021), I treated the infinitival S as pro/PRO controlled by a matrix experiencer with inherent DAT κ.
DP, along with a pronominalized, focused copy in infinitival [Spec,FocP], resembling (47) for *elkezd*. But postsyntactic κ-value copying is unnecessary, since the syntactic copy in [Spec,FocP] already has DAT (assigned in [Spec,vP]). No “long-distance” O-agreement occurs, for two reasons. First, although the infinitival O agrees with infinitival v for ACC κ, infinitival v does not agree with infinitival C, which has unvalued uk but no π. Second, matrix v is fully ϕ-defective.

Matrix Asp is ϕ-complete, but cannot find a goal with π and #. The only active local goal is infinitival C. As a last resort, matrix Asp default-agrees with and assigns NOM κ to infinitival C. Default values are inserted for π (0) and # (NN) on matrix Asp.

<table>
<thead>
<tr>
<th>Matrix verb</th>
<th>Matrix Asp</th>
<th>Matrix S</th>
<th>Matrix v</th>
<th>Infinitival C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject-control akar (17)</td>
<td>• uπ, u#</td>
<td>• non-PRO</td>
<td>• uπ</td>
<td>• partially ϕ-defective</td>
</tr>
<tr>
<td>Non-control, raising elkezd (48)</td>
<td>• ϕ-complete</td>
<td>• receives NOM</td>
<td>• ϕ-complete</td>
<td>• assigns no κ</td>
</tr>
<tr>
<td>Non-control, non-raising kell (52)</td>
<td>• assigns NOM</td>
<td></td>
<td></td>
<td>• uκ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Matrix verb</th>
<th>Infinitival Asp</th>
<th>Infinitival S</th>
<th>Infinitival v</th>
<th>Infinitival O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject-control akar (17)</td>
<td>• no π or #</td>
<td>• PRO</td>
<td>• PRO</td>
<td>• non-PRO</td>
</tr>
<tr>
<td>Non-control, raising elkezd (48)</td>
<td>• ϕ-complete</td>
<td>• assigns no κ</td>
<td>• PRO</td>
<td>• PRO</td>
</tr>
<tr>
<td>Non-control, non-raising kell (52)</td>
<td>• uπ, u#</td>
<td>• receives DAT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Properties of agreement heads in infinitival constructions

9. **Conclusion.** The apparently nominative S of a Hungarian subject-control verb’s infinitival complement realizes focused PRO at PF. This NOM form does not exist at Syntax, where PRO remains caseless, not intervening in “long-distance” O-agreement. At PF, ϕ-features and possibly syntactic structure undergo FoCop from the coindexed matrix S to realize PRO as a plain pronoun, comp pronoun, or lexical DP. If the comp pronoun or lexical DP matrix S is OP-less, FoCop is total and featural-radical; PRO emerges as a DP identical to the matrix S that then incurs FoDel, because its non-ϕ-content must surface once and only once. If this matrix S is OP-ful, FoCop is partial and featural, and PRO emerges as a plain pronoun, along with the matrix S as a lexical DP. If the matrix S is a plain pronoun, FoCop is total and featural, and PRO is realized too as a plain pronoun. The matrix S is not deleted; it is silent pro by default, but certain species of OP force its overt spellout. In non-control predicates, spellout of the focused non-PRO infinitival S-DP entails the pronunciation of a preexisting syntactic copy with (near-)complete featural and radical information, though in raising predicates, a case value may need to be copied postsyntactically from a higher copy to pronounce a lower copy.

References

