The closeness constraint on focus association and the syntax of Q-particles

Muyi Yang*

Abstract. While in some languages focus association at a distance is possible, in some languages, focus particles must be as close to their associates as possible. In this paper, I argue that the closeness constraint is attested also in wh-questions. The evidence comes from Sinhala (Indo-Aryan) wh-questions, in which the Q-particle is restricted to positions that are as close to the wh-word as possible. I show that this constraint poses challenges for the existing analyses of Sinhala wh-questions, and present a new account under which the Q-particle undergoes phase-constrained overt movement.

Keywords. Sinhala; focus; wh-questions; Q-particles; degree questions; phase

1. Introduction. It is well-known that in some languages, focus association at a distance is possible (Taglicht 1984, Rooth 1985, Quek & Hirsch 2017, among many others). For instance, it is possible for English only to surface separately from its associate, as in (1):

(1) a. I only baked [a PIE]F for Mary.
 b. I only baked a pie [for MARY]F.

However, in some languages, focus particles are subject to a constraint in that they must surface as close to their associates as possible (e.g. Zanon 2018 for Russian; Erlewine 2017 for Vietnamese; Erlewine 2016, Zanon & Hsu 2019 for Mandarin). This is exemplified by (2), where Russian tol’ko ‘only’ is required to immediately precede the focused direct object:

 Andrej only pie baked for sister
 Andrej only baked pie for sister
 only Andrej baked pie for sister
 ‘Andrey only baked [a PIE]F for his sister.’ (Adapted from Zanon 2018: 420 (5))

Tol’ko sometimes cannot be immediately adjacent to its associate for independent reasons, but the closeness constraint is attested even in those cases. For instance, (3) shows that the NP ‘fresh Ceylon tea’ is an extraction island. (4a)–(4b) show that to associate with tsejlonskij ‘Ceylon’, tol’ko cannot appear inside the island, but can appear immediately adjacent to the island that contains its associate. Furthermore, tol’ko cannot be separated farther away from the island, as in (4c), indicating that the closeness constraint is in effect here, too.

(3) ?*Anna [TSEJLONSKIJ]F podaet [svežij t čaj].
 Anna Ceylon serves fresh tea
 ‘Anna serves fresh [CEYLON]F tea.’ (Zanon 2018: 434 (33c))

* Many thanks to Dulini Dilshara Jayasuriya for patiently sharing her intuitions with me. For discussions and comments, I am indebted to Željko Bošković, Adrian Stegovec, Magdalena Kaufmann, Teruyuki Mizuno, Hadas Kotek, Pasha Koval, Jason Merchant, Yoshiki Fujiwara, and the audience at USC Syntax+ (February 2021), UConn LingLunch (March 2021) and LSA (January 2022). All errors are mine. Authors: Muyi Yang, University of Connecticut (muyi.yang@uconn.edu).

© 2022 Author(s). Published by the LSA with permission of the author(s) under a CC BY license.
(4) a. *Anna podaet [svežij tol’ko [TSEJLONSKIJ]F čaj].
 Anna serves fresh only Ceylon tea
b. ?Anna podaet tol’ko [svežij [TSEJLONSKIJ]F čaj].
 Anna serves only fresh Ceylon tea
 only Anna serves fresh Ceylon tea
 ‘Anna serves only fresh [CEYLON]F tea.’ (Adapted from Zanon 2018: 434 (33))

In this paper, I show that the closeness constraint is also attested in wh-questions. The evidence comes from Sinhala (Indo-Aryan), where wh-questions are formed with the Q-particle ḷə, as in (5):

(5) Chitra kohe ḷə giyee?
 Chitra where ḷə go.PST.FOC
 ‘Where did Chitra go?’

I establish a new generalization that similarly to Russian tol’ko ‘only’, ḷə needs to be as close to its associate—namely the wh-word—as possible. To see this, first note that ḷə is sometimes allowed to appear sentence-finally, as in (6):

(6) siyhaḷo kochchɔra danno紊a ḷə?
 Sinhala how.much know.NPST.FIN Q
 ‘How much Sinhala do you know?’

However, in cases like (5), ḷə is not allowed to appear sentence-finally. Compare (7) with (5):

(7) *Chitra kohe giyaa ḷə?
 Chitra where go.PST.FIN Q
 ‘Where did Chitra go?’

I show that (7) is ungrammatical because the position of ḷə in (5)—where ḷə is immediately adjacent to the wh-word—is available. In other words, the availability of the wh-adjacent ḷə in (5) blocks the sentence-final ḷə in (7). As for why the sentence-final ḷə is possible in (6), I show that it is because the variant of (6) with a wh-adjacent ḷə is banned by an independent constraint on degree expressions, including the wh-word kochchɔra ‘how much’. Hence, ḷə in (6) is in its closest possible position to the wh-word already.

This paper is structured as follows. Sec 2 establishes the above mentioned generalization, and points out the challenge that this generalization poses for the previous accounts of Sinhala wh-questions. Sec 3 presents a new analysis, which derives the distribution of ḷə based on phase-constrained movement. Sec 4 concludes the paper.

2. Establishing the closeness constraint. In this section, I first observe two independent properties of Sinhala wh-questions, one concerning the locality-sensitivity of ḷə, and the other concerning the interaction between ḷə and degree expressions (Sec 2.1). I then examine the interaction of these two properties, from which the closeness constraint of ḷə will follow (Sec 2.2). I then discuss the limitations of the previous accounts of Sinhala wh-questions in capturing the closeness constraint (Sec 2.3).

2.1. Basic paradigm. Sinhala has a series of focus particles that require the verb to be inflected with the focus suffix -e (Gair & Sumangala 1991, Sumangala 1992, Chandralal 2010, 2
among many others). For instance, cleft constructions are formed with the particle tamay. As shown in (8), the focus suffix -e, but not the default suffix -a, is allowed on the verb.

(8) Chitra [ee pota] tamay {kieuwe / *kiewa}.
 Chitra that book TAMAY read.PST.FOC read.PST.FIN
 ‘It was that book that Chitra read.’ (Kishimoto 2018: 2)

The Q-particle də in wh-questions is another instantiation of focus particles. For instance, in the where-question in (5), repeated in (9), the verb ‘give’ needs to be inflected with the focus suffix -e; it cannot be inflected with the non-focus verbal suffix -a:

(9) Chitra kohe də {giyee / *giyaa}?
 Chitra where Q go.PST.FOC go.PST.FIN
 ‘Where did Chitra go?’

Additional examples illustrating this are provided by the subject question (10), the object question (11) and the how-question (12).

(10) kau də aawe?
 who Q come.PST.FOC
 ‘Who came?’

(11) Chitra monəwa də gatte?
 Chitra what Q buy.PST.FOC
 ‘What did Chitra buy?’

(12) Ranjit kohom də kaa-ekə hadanne?
 Ranjit how Q car-INDF fix.NPST.FOC
 ‘How is Ranjit going to fix the car?’

In all the examples given in (9)-(12), də appears immediately adjacent to the wh-words. Such adjacency is impossible in some cases, which I will turn to in the following.

2.1.1. Locality. Previous works on Sinhala wh-questions have noted that də is island-sensitive. Specifically, it has been observed that when wh-words appear inside the following types of elements, də must appear adjacent to these elements, instead of adjacent directly to the wh-words: relative clauses, clausal complements of nouns, adjunct islands and wh-islands (Gair & Sumangala 1991; Sumangala 1992; Kishimoto 1992, 2005; Hagstrom 1998, 2004). (13) provides an example where a wh-word appears inside a relative clause:

(13) a. *[monəwa də gatte] kenaa] aawe?
 what Q buy.PST.INF person come.PST.FOC
 lit. ‘What did a person [that bought t] came?’

All the cases noted above involved islands. But the effect is not limited to islands; specifically, it is also attested in long-distance questions. As shown in (14), when a wh-word occurs inside an embedded non-interrogative clause, də must appear to the right of the complementizer.1

1 Note that some authors give examples similar to (14a) as acceptable, in particular, Sumangala (1992) and Kishimoto (1992, 2005) (but see Kishimoto 1992, 2005 for complications regarding embedding predicates; i.e. according to Kishimoto, with non-bridge verbs like kendiruwe ‘whispered’, wh-adjacent də as in (14a) is impossible, whereas lower-CP-adjacent də as in (14b) is acceptable). I will leave investigation of potential speaker variation in such cases to future work.
(14) a. *[Ranjit monəwa də gatta kiyəla] kiuwe?
 Ranjit what Q buy.PST.FIN C say.PST.FOC
b. [Ranjit monəwa gatta kiyəla] də kiuwe?
 Ranjit what buy.PST.FIN C Q say.PST.FOC
 ‘What did you say [that Ranjit bought t]?’

Note that this effect does not obtain if the relevant clause is interpreted as an indirect question (i.e. when the wh-word takes scope in the clause):

(15) [kau də aawe kiyəla] may da-nn-e næe.
 who Q come.PST.FOC C I know.NPST.FOC NEG
 ‘I don’t know who came.’

The locality-sensitivity of do illustrated by the above examples is summarized in (16):

(16) **Locality-sensitivity:** When the wh-word occurs inside an NP or a CP that is not the intended interrogative scope, də must occur immediately to the right of the NP/CP.

2.1.2. Degree Questions. Independently of the locality-sensitivity of do, Sinhala focus particles are subject to the constraint in (17) (‘adjacency’ refers to linear order):

(17) **Ban on focus-degree adjacency:** A focus particle cannot be adjacent to degree expressions in Sinhala.

Let us first consider an illustration of (17) in non-interrogative sentences. Recall that in (8), we have seen that cleft constructions are formed with the focus particle tamay. Compare (8) with (18) below, which shows that cleft constructions are disallowed when a degree expression is clefted:

(18) ??John sigələ tikak tamay denne.
 John Sinhala a.little TAMAY know.NPST.FOC
 Intended: ‘It is a little that John knows Sinhala.’

Similarly, in degree questions, də cannot appear adjacent to the degree wh-word kochchoə ‘how much’, as shown in (19a). Instead, do is required to appear sentence-finally, and the verb needs to be inflected with the non-focus suffix -a instead of the focus suffix -e, as in (19b).

(19) a. *sigələ kochchoə də denne?
 Sinhala how.much Q know.NPST.FOC
b. sigələ kochchoə dannəwa də? =(6)
 Sinhala how.much know.NPST.FIN Q
 ‘How much Sinhala do you know?’

2.2. Competition between different positions of do. The locality-sensitivity of do (16) and the ban on focus-degree adjacency (17) interact in an interesting way. Consider (20), where the degree wh-word kochchoə ‘how much’ appears inside a relative clause. Given our observation regarding (19b), one might expect (20a) to be acceptable. However, here, do is required to appear immediately to the right of the relative clause, as in (20b).

(20) a. *[sigələ kochchoə dannə laməj-ek] aawa də?
 Sinhala how.much know.NPST.INF child-INDEF come.PST.FIN Q
b. [siŋhə lə kochchərə danno lamaj-ek] ḏə aawe?
 Sinhala how.much know.NPST.INF child-INDEF Q come.PST.FOC
 ‘How much did [a child that knows Sinhala t] come?’

Likewise, in long-distance questions with kochchərə in the embedded CP, ḏə must appear immediately to the right of the lower CP, rather than in the sentence-final position:

(21) a. *Ranjit [John siŋhə lə kochchərə danno kijalə] kiuwa ḏə?
 Ranjit John Sinhala how.much know.NPST.FIN C say.NPST.FIN Q
 ‘How much did Ranjit say [John knows Sinhala t]?’

 b. Ranjit [John siŋhə lə kochchərə danno kijalə] ḏə kiuwe?
 Ranjit John Sinhala how.much know.NPST.FIN Q say.PST.FOC
 ‘How much did Ranjit say [John knows Sinhala t]?’

What we have seen is the following. As stated in (17), de cannot appear next to kochchərə ‘how much’. In the simple degree questions observed in (19), this restriction is obviated by placing ḏə in the sentence-final position; however, when locality becomes relevant, as observed in (20) and (21), the restriction is obviated by placing ḏə next to the relevant NP and CP, with the sentence-final ḏə being unavailable.

Based on the contrast between (19) and (20)/(21), I propose that Sinhala ḏə is subject to the following closeness constraint:

(22) **Closeness constraint:** Sinhala ḏə is restricted to positions that are as close to the wh-word as possible.

For instance, the long-distance degree question (21) is an instantiation of (22): although the ban on ḏə next to kochchərə ‘how much’ is obviated in both (21a) and (21b), the placement of ḏə next to the embedded CP is closer to the wh-word than the sentence-final ḏə is; hence, (21b) is acceptable, whereas (21a) is not (the same reasoning applies to (20)). As for the simple degree question (19), the only way to avoid the adjacency between ḏə and kochchərə is to place ḏə sentence-finally. In other words, the sentence-final ḏə in (19b) is in its closest possible position to the wh-word.

More generally, the closeness constraint (22) amounts to the following prediction. Whenever ḏə is allowed to appear in both a non-sentence-final and a sentence-final position (in the sense that neither (16) nor (17) is violated), the sentence-final position should always be blocked by the availability of its non-sentence-final counterpart, since ḏə is closer to the wh-word in non-sentence-final than in sentence-final positions.² Apart from the degree questions in (20) and (21), this prediction is also borne out in simple non-degree questions, as shown in (23):

² However, there are two types of questions where the closeness constraint does not seem to hold. The first concerns quantity questions, as shown in (i):

(i) a. Chitra pot kiiyak ḏə kiuwe?
 Chitra book how.many.INANIM Q read.PST.FOC
 ‘How many books did Chitra read?’

 b. Chitra pot kiiyak kiuwa ḏə?
 Chitra book how.many.INANIM read.PST.FIN Q
 ‘How many books did Chitra read?’

The other case are embedded questions. As shown in (ii), ḏə can show up immediately adjacent to the wh-word or at the end of the embedded clause:

(ii) a. [kau ḏə aawe kijalə] may danno nae. =(15)
 who Q come.PST.FOC C I know.NPST.FOC NEG
In view of the locality-sensitivity of \(d_{\phi} \) (16) and the ban on focus-degree adjacency (17), both the \(wh \)-adjacent and the sentence-final positions of \(d_{\phi} \) should in principle be available in (23). The closeness constraint of \(d_{\phi} \) predicts the sentence-final position to be blocked by the \(wh \)-adjacent one, which is indeed the case.

2.3. Previous accounts. Existing analyses of Sinhala \(wh \)-questions have all observed that \(d_{\phi} \) cannot appear inside islands (cf. (13a)), and took this observation as an indication of movement. Specifically, they assumed that \(d_{\phi} \) undergoes covert movement to interrogative \(C \): in (13a), the movement crosses an island boundary, thus rendering its ungrammaticality; in contrast, in (13b), \(d_{\phi} \) moves from a position outside the island, which is acceptable (Gair & Sumangala 1991, Sumangala 1992, Kishimoto 1992, 2005, Hagstrom 1998, 2004, Cable 2010, Morita 2019, among many others). As for why \(d_{\phi} \) can surface sentence-finally (cf. (19)), some assume that it is because \(d_{\phi} \) can also move overtly to interrogative \(C \) (Hagstrom 1998, Kishimoto 2005), others assume that it is because \(d_{\phi} \) can be base-generated sentence-finally (Morita 2019).

These approaches have difficulty in capturing the data presented in this section in the following two respects. First, we have seen above that islandhood does not suffice to characterize the locality-sensitivity of \(d_{\phi} \), because the separation between \(wh \)-words and \(d_{\phi} \) is also obligatory in long-distance questions, where there is no island. Therefore, the assumption of the previous analyses that non-sentence-final \(d_{\phi} \) undergoes covert movement to \(C \) would be unable to capture the observation in (16); more specifically, it would be unable to rule out the long-distance question in (14a).

The second problem, and one that is more relevant to the interests of this paper, is that the existing analyses do not capture the closeness constraint established in (22).\(^3\) For instance, to capture the competition between the long-distance degree questions in (21a) and (21b), one would need to argue that the operation that derives (21b) blocks the operation that derives (21a). However, for the analysis under which (21b) is derived via covert movement and (21a) via overt movement of \(d_{\phi} \) to \(C \), it is unclear how one operation should be banned by another. Likewise, for the analysis that derives (21a) by base-generating \(d_{\phi} \) sentence-finally, it remains unclear why this operation should be blocked by the operation that derives (21b), i.e. covert movement of \(d_{\phi} \) to \(C \).

In the following, I propose a new account of Sinhala \(wh \)-questions that derives the dis-

\[^3\]See Cable (2013) for languages where the closeness constraint does not hold; e.g. in Tlingit, long-distance questions allow the Q-particle to be immediately adjacent either to the \(wh \)-word or to the embedded clause.
tribution of do in a uniform fashion; that is, the account does not posit different syntactic operations or the the covert/overt distinction for the different positions of do. Furthermore, the closeness constraint will fall out naturally from the proposed derivations.

3. Analysis. In this section, I propose a phase-based movement account of Sinhala wh-questions. Sec 3.1 introduces the three key ingredients of the proposed analysis. Sec 3.2 illustrates how the ingredients derive the data presented in Sec 2.

3.1. Ingredients. First, I propose that the Q-particle do is merged with the wh-word if it can; if not, it is merged with the lowest maximal projection containing the wh-word. This ingredient implements the constraint observed in Sec 2.1.2 that do cannot appear adjacent to the degree wh-word kochch ‘how much’. Hence, in the degree question (6)/(19), do is base-generated by adjoining to vP, as shown in (24a). In non-degree questions like (5)/(23), do directly merges with the wh-word, as shown in (24b).

\begin{align}
\text{(24) a. } & \left[\text{vP} \left[\text{vP pro} \left[\text{\textw{ how much } [vP Sinhala know]}\right] \text{do}\right]\right] \text{ e.g. (6)/(19)} \\
\text{b. } & \left[\text{NP} \left[\text{NP where } \text{do}\right]\right] \text{ e.g. (5)/(23)}
\end{align}

Second, I propose that do carries an uninterpretable focus feature [uFoc] that is checked off by the head of FocP—which I take to be where the focus verbal suffix -e is generated—via Agree. I adopt the assumption that syntactic structures are built in a bottom-up, phase-based fashion, as in Chomsky (2000). As usual, I assume that phases—NPs, vPs and CPs—become inaccessible to further syntactic operations upon their completion (Phase Impenetrability Condition, henceforth PIC), and only elements at the edge of a phase can participate in operations that involve elements in phases higher than their own phase. The consequence of these assumptions is that do undergoes overt movement that is motivated by its own formal inadequacy. Specifically, upon the completion of each phase, the uninterpretable feature of do forces do to move to the phasal edge to be accessible to a potential feature-checker, since otherwise its feature would never get checked, leading to an inevitable crash (in line with Bošković 2007’s statement of Last Resort, i.e. movement satisfies Last Resort if without the movement a crash occurs). To illustrate, suppose XP is a phase that contains do, and Foc⁰ has not entered the derivation. In the configuration in (25a), do does not move; as a result, its uninterpretable feature will never get checked, leading to an inevitable crash. (25b) avoids the crash, since at the edge of XP, do has access to its potential feature-checker.

\begin{align}
\text{(25) a. } & \left[\text{XP} \left[\text{YP } \ldots \left[\text{where do}_{\text{uFoc}}\right] \ldots\right] \text{X}\right] \text{ (X derivation crashes inevitably)} \\
\text{b. } & \left[\text{XP} \left[\text{YP } \ldots \left[\text{where t}\right] \ldots\right] \text{X} \text{ do}_{\text{uFoc}}\right] \text{ (✓ derivation can proceed)}
\end{align}

It should be easy to see that the locality constraint that do must not appear inside an NP or a CP (i.e. the badness of (13a) and (14a)) falls out as a consequence of the proposed feature-checking requirement of do. Specifically, when do occurs inside an NP or a CP (i.e. the configuration in (25a), where XP is an NP or a CP), the NP/CP phase will prevent do from establishing an Agree relation with its potential feature-checker. As a result, do’s uninterpretable feature would never be checked off, rendering (13a) and (14a) unacceptable. The derivation of these examples will be provided in more detail in Sec 3.2; in particular, after introducing all the ingredients of the proposal, it will become clear why do in these examples has to appear

4 I will follow Bošković (2014) and assume that article-less languages like Sinhala do not have DP, but the choice between NP and DP is inconsequential for our purposes.
immediately adjacent to the NP (i.e. (13b)) and the CP (i.e. (14b)).

Before introducing the last ingredient of my proposal, it is worth emphasizing that the mechanism of \(\text{do} \)'s movement proposed here differs significantly from that proposed by Hagstrom (1998) and Kishimoto (2005). Under their proposal, \(\text{do} \) undergoes (covert or overt) movement to check off an uninterpretable feature on interrogative C. In contrast, under the current proposal, \(\text{do} \) is never ‘attracted’ by any element in the higher structure; rather, it is \(\text{do} \)'s own formal inadequacy that forces \(\text{do} \) to move. As we will see shortly, this allows us to derive the different positions of \(\text{do} \)—including the non-sentence-final and the sentence-final ones—in a uniform fashion. Hence, we need not assume that the relevant feature driving the movement can be either weak or strong, an ambiguity that was crucial in Hagstrom’s and Kishimoto’s proposal to ensure that \(\text{do} \) can surface non-sentence-finally (resulting from \(\text{do} \)'s covert movement, driven by a weak feature on C) or sentence-finally (resulting from \(\text{do} \)'s overt movement, driven by a strong feature on C).

At this point, the reader might have noticed the following question that immediately arises out of the current proposal: if NP and CP prevent \(\text{do} \) from establishing an Agree relation with a potential feature-checker, why does \(\text{vP} \), which is also a phase, not prevent \(\text{do} \) from doing so? For instance, consider again the where-question, repeated below. Under the current phase-based account, one might expect (26) to be unacceptable just like (13b) and (14a): since \(\text{do} \) is in a position lower than \(\text{v} \), the boundary of the \(\text{vP} \) phase should prevent \(\text{do} \) from accessing its feature-checker, leading to an inevitable crash of the derivation. However, (26) is acceptable.

(26)
\[
\text{Chitra kohe } \text{do } \text{giyee?} \\
\text{Chitra where } \text{Q go.PST.FOC} \\
\text{‘Where did Chitra go?’}
\]

To resolve this issue, I adopt Chomsky (2001)’s definition of the PIC, where the PIC effect for a phase XP kicks in only after a higher phasal head \(Z \) enters the structure.\(^6\) This essentially amounts to \(\text{XP} \) becoming a phase only after \(Z \) enters the structure, which is what I will assume below. Additionally, I adopt Bošković (2014)’s contextual approach to phasehood, where the highest phrase in a phasal domain is a phase; e.g. in split CP, the highest phrase in

\(^5\) One might wonder where the verb in (26) is; if it is in \(\text{T} \), \(\text{do} \) in (26) may in fact be higher than \(\text{v} \) (e.g. \(\text{do} \) may be at the edge of \(\text{vP} \), thus being unaffected by the PIC effect of the \(\text{vP} \) phase). However, the assumption that the verb in (26) is in \(\text{T} \) does not seem plausible, which can be shown by the (non-)volitionality reflected in verbal morphology. In Sinhala, (non-)volitionality is expressed by verb stem alternation (Inman 1994; Beavers & Zubair 2013; Chou & Hettiarachchi 2016, among others); for instance, for its non-past basic forms, the verb ‘dance’ can be formed as \(\text{næte-nawa} \) for volitional and \(\text{næte-nawa} \) for non-volitional. In simple matrix \(\text{wh} \)-questions, \(\text{do} \) appears immediately next to the \(\text{wh} \)-words, regardless of the (non-)volitionality of the verb, as shown below (non-volitional verbs also require non-nominative case on the agents, which for ‘dance’ is dative, cf. Chou & Hettiarachchi 2016).

(i)
\[
\begin{align*}
\text{a. } & \text{kau } \text{do } \text{natanne?} \\
& \text{who Q dance.NPST.FOC} \\
& \text{‘Who dances (actively)?’}
\end{align*}
\]

\[
\begin{align*}
\text{b. } & \text{kaa-\text{q} do næte-nennne?} \\
& \text{who-DAT Q dance.INVOL.NPST.FOC} \\
& \text{‘Who dances involuntarily?’}
\end{align*}
\]

If the source of information on verbs regarding (non-)volitionality is within the \(\text{vP} \)-domain, the fact that \(\text{do} \) appears to the left of the verbs in (i) indicates that \(\text{do} \) is in a position lower than \(\text{v} \).

\(^6\) Alternatively, if \(\text{vP} \) is not a phase, as argued recently by Keine & Zeijlstra (2021), either Chomsky (2000)’s or Chomsky (2001)’s approach to the PIC would work.
the split CP is then a phase.

This has consequences for the phasal status of vP in Sinhala in that the PIC effect for the vP phase kicks in only when the highest phrase in the CP domain is merged. But which phrase is it? As argued by Kishimoto (2005, 2018), Sinhala has split CP, with a projection higher than FocP in the CP domain, namely ComplP, which is headed by the complementizer kijša. One piece of evidence of this effect comes from embedded questions, in which kijša is realized above the focus verbal suffix, as in (27):

\[(27) \ [kau \ də \ aawe \ kijša] \ may \ da-\,nn-e \ nae. \ \text{=}(15)\]

\[\text{who Q come.PST.FOC C I know.NPST.FOC NEG}\]

\[\text{‘I don’t know who came.’}\]

As a result, in Sinhala, the phasal head in the CP domain is the complementizer, rather than Foc\(^0\). This has a consequence for vP, namely the phasal status of vP gets activated only when the complementizer enters the structure. To illustrate, consider the three different points of the derivation given in (28a)-(28c). (28a) is a configuration where v has just entered the structure. According to the current analysis, vP is not yet a phase at this point; in other words, the PIC effect does not kick in at this point. As a result, in (28b), when Foc\(^0\) is merged, elements within VP are still accessible to Foc\(^0\). It is only when Compl\(^0\) enters the structure that the vP becomes a phase (i.e. the PIC effect kicks in), as in (28c).

\[(28) \ a. \ [vP \ VP \ v]\]

\[b. \ [FocP \ [TP \ [vP \ VP \ v] \ T] \ Foc]\]

\[c. \ [ComplP \ [FocP \ [TP \ [vP \ VP \ v] \ T] \ Foc] \ Compl]\]

This approach to phasehood allows us to account for the fact that vP, unlike NP and CP, does not block the Agree relation between də and Foc\(^0\). The reason is that when Foc\(^0\) is merged, vP is essentially not yet a phase and thus does not trigger a PIC effect; as a result, an Agree relation between də and Foc\(^0\) can be established. In other words, the uninterpretable feature of də can be checked before vP gets activated as a phase. Let us now walk through three examples to see how the ingredients introduced here capture the data presented earlier.

3.2. ILLUSTRATIONS OF DERIVATIONS. First, consider the simple where-question (29a), with its derivation given in (29b).

\[(29) \ a. \ Chitra \ kohe \ də \ giyee? \ \text{=}(5)/(23)/(26)\]

\[\text{Chitra where Q go.PST.FOC ‘Where did Chitra go?’}\]

\[b. \ [FocP \ [TP \ [vP \ Chitra \ [NP \ where \ də[_{vFoc}] \ go]] \ T] \ [Foc \ -e[_{vFoc}]]]\]

Since nothing prevents də from merging with the non-degree wh-word, də is base-generated by adjoining to the wh-word. As discussed in (28b), when Foc\(^0\) enters the structure, vP will not induce a phase-blocking effect. Hence, də is able to Agree with Foc\(^0\), with the uninterpretable feature of də being checked off successfully in its base-generated position. Moreover, this derivation correctly predicts the counterpart of (29a) with sentence-final də (i.e. (23b)) to be unacceptable. The reason is that the feature-checking requirement of də can already be satisfied in its base-generated position, and moving it further would be a superfluous operation. In other words, the current account captures the fact that the wh-adjacent position of də blocks its
sentence-final position in simple non-degree questions like (29a).

Simple degree questions like (30a) are derived similarly, except for the base-generated position of \(d \). See (30b) for the derivation of (30a).

\[(30)\]
\[\text{a. } \text{sinhala kochch\text{"o}r dann\text{"o}wa } \text{ } d\text{? } = (6)/(19)\]
\[\text{Sinhala how.much know.NPST.FIN Q}\]
\[\text{‘How much Sinhala do you know?’}\]

\[\text{b. } [\text{FocP } [\text{TP } [\text{vP } \text{pro } [\text{v' how much } [\text{vP Sinhala know}]]] \text{ } d\text{[uFoc]}] \text{ } T] \text{ } [\text{Foc } -e[tFoc]]]\]
\[\text{\text{"Agree‘}}\]

As discussed in (24a), in degree questions, \(d \) does not adjoin directly to the degree \(wh \)-word, but rather to the \(vP \) that contains the degree \(wh \)-word. There is no phasal boundary between the base-generated position of \(d \) and \(\text{Foc}^0 \), and the feature-checking requirement can thus be satisfied without movement. As for why the verb takes the non-focus suffix \(-a\) rather than the focus suffix \(-e\) in (30a), I assume that this is because \(d \) disrupts the suffixation of \(-e\) on the verb stem. Specifically, \(d \) is an enclitic; since enclitics are not allowed in between a stem and a suffix, verbal complexes of the form \([\text{stem } + d \text{ } + \text{suffix}]\) are not allowed. As a result, in (30b), the focus suffix \(-e\) that is generated in \(\text{Foc}^0 \) cannot be realized. I assume that in such cases, the non-focus morphology \(-a\) gets realized as the default option, thus giving rise to the non-focus verbal form \(dann\text{"o}wa ‘know’ \) in (30a).

Finally, let us turn to cases where the \(wh \)-words occur inside an NP or a CP. Below, I use long-distance questions for illustration; the reader can verify that the proposed derivation also works for cases where the \(wh \)-words are in a relative clause.

\[(31)\]
\[\text{[Ranjit mon\text{"o}wa gatta } \text{kiy\text{"o}la}\text{ } d\text{? kiuwe? } = (14b)\]
\[\text{Ranjit what buy.PST.FIN C Q say.PST.FOC}\]
\[\text{‘What did you say [that Ranjit bought t]?’}\]

For clarity, let us see the derivation of (31) incrementally, starting from the embedded clause. Since the \(wh \)-word of (31) is not a degree expression, \(d \) is base-generated by adjoining to the \(wh \)-word, as shown in (32a); at this point, \(vP \) is not yet a phase (given that \(XP \) becomes a phase only after a higher phasal head enters the structure). (32b) shows the configuration where the complementizer of the embedded clause has entered the structure. As discussed earlier, the complementizer is a phasal head, and thus activates the phasal status of the \(vP \); \(d \) then moves to the edge of the \(vP \) phase to make sure that it has access to a potential feature-checker higher up (in the spirit of Bošković 2007). Note here that in the spirit of Chomsky (2008)’s proposal regarding cyclicity, I assume that some acyclicity is allowed in a phase-based derivation. Specifically, the cycle effect kicks in and bans access to a lower phase only after a higher phase is activated. Since ComplP is not yet activated as a phase at the point of (32b), the cycle effect does not kick in, and movement to \(vP \) is still possible. Hence, I assume that in (32b), \(d \) moves to the edge of the \(vP \) to ensure that it has access to a potential feature-checker.

\[(32)\]
\[\text{a. } [\text{vP Ranjit } [\text{vP } [\text{NP what } d\text{[uFoc]}] \text{buy}]]\]
\[\text{b. } [\text{ComplP } [\text{TP } [\text{vP Ranjit } [\text{vP } [\text{NP what t} \text{buy}]]] \text{ } d\text{[uFoc]}] \text{ } T] \text{ } \text{Compl}]\]

The rest of the derivation proceeds similarly to what we have already seen. When the ma-
trix ν enters the structure, as in (33a), the ComplP gets activated as a phase, and dₒ moves to the edge of ComplP accordingly (assuming that acyclicity is allowed in the sense discussed above). Finally, when Foc⁰ enters the derivation, as in (33b), there is no phasal boundary between the position of dₒ (i.e. the edge of ComplP) and Foc⁰, since the matrix νP is not yet activated as a phase. Therefore, dₒ can check off its uninterpretable feature at the edge of ComplP.

(33) a. \[[vP \text{ pro } [VP [\text{ComplP } [TP [vP ...] t] T] \text{ Compl}] dₒ[_{uFoc}] \text{ say}]]

 b. \[[FocP [TP [vP \text{ pro } [VP [\text{ComplP } [\text{ComplP} ... \text{ Compl}] dₒ[_{uFoc}] \text{ say}]] T] [Foc -e[_{iFoc}]]]]

Now, it should be easy to see why in the long-distance degree question in (34a), dₒ appears adjacent to the lower CP rather than sentence-finally. The derivation of (34a) is given in (34b) (irrelevant projections like TP are omitted).

Ranjit John Sinhala how.much know.NPST.FIN C Q say.PST.FOC
‘How much did Ranjit say [John knows Sinhala t]?’

 b. \[[FocP [vP [\text{ComplP } [\text{ComplP} [vP ... how.much ... t] \text{ Compl}] dₒ[_{uFoc}] \text{ say}]] T] [Foc -e[_{iFoc}]]]]

Since the wh-word of (34a) is a degree expression, dₒ is base-generated by adjoining to the embedded νP rather than to the wh-word. The rest of the derivation proceeds similarly to the derivation of (31). When the matrix ν enters the structure, the embedded ComplP gets activated as a phase, and dₒ moves to the edge of ComplP accordingly. From there, dₒ is able to Agree with Foc⁰, thereby checking off its uninterpretable feature. Since the feature-checking requirement of dₒ is already satisfied in the configuration in (34b), dₒ is not allowed to undergo further movement. Therefore, we correctly predict the variant of (34a) with sentence-final dₒ (i.e. (21a)) to be unacceptable.

To sum up, due to the uninterpretable feature of dₒ, dₒ surfaces in positions from which Agree with Foc⁰ is possible. The bottom-up fashion of structure-building ensures that the uninterpretable feature of dₒ gets checked as soon as it can be, that is, as soon as Foc⁰ enters the structure. This leads to the closeness constraint observed in (22): as long as the feature-checking requirement of dₒ is satisfied in a lower position, dₒ will not move to a higher position. In other words, the placement of dₒ in a non-sentence-final position blocks the placement of dₒ sentence-finally.

4. Conclusion. I have examined the distribution of Sinhala Q-particle dₒ and observed that dₒ must be as close to the wh-word as possible. I have argued that (i) dₒ is generated by adjoining to the wh-word if it can, and (ii) dₒ undergoes overt movement that is driven by the need to check off an uninterpretable feature that it carries (with no movement of dₒ allowed if dₒ is in the relevant feature-checking relation). This account captured the complex patterns of degree questions, long-distance questions, and questions with a wh-word within an NP. It also captured what looks like a competition between the different positions of dₒ, i.e. the availability of a non-sentence-final position of dₒ blocks the availability of a sentence-final one. Besides the open questions that have already been discussed, a direction for future work is to investigate whether the proposed account can be extended to languages where a similar locality constraint
is found in focus constructions (e.g. Mandarin, cf. Erlewine 2016, Zanon & Hsu 2019; Vietnamese, cf. Erlewine 2017).

References

Bošković, Željko. 2014. Now I’m a phase, now I’m not a phase: On the variability of phases with extraction and ellipsis. Linguistic Inquiry 45(1). 27–89. [https://doi.org/10.1162/ling_a_00148].

