Abstract This paper offers a predictive mechanism to derive the presuppositions of verbs. The starting point is the intuition, dating back at least to Stalnaker 1974, that the information conveyed by a sentence that is in some sense independent from its main point is presupposed. The contribution of this paper is to spell out a mechanism for deciding what will become the main point of the sentence and how to calculate independence. It is proposed that this can be calculated by making reference to event times. As a very rough approximation, the main point of an utterance is what (in a sense to be defined) has to be about the event time of the matrix predicate and the information that the sentence conveys but is not (or does not have to be) about the event time of the matrix predicate is presupposed. The notion of aboutness used to calculate independence is based on Demolombe & Fariñas del Cerro 2000.

Keywords: presuppositions, aboutness, lexical semantics, factivity, sortal presuppositions

1 Introduction

Why do verbs give rise to the presuppositions they do? One possibility, which has been the prevailing attitude in the presupposition literature, is that this question might not have an answer, and for a principled reason: the presuppositionality of verbs (and indeed any expression) is simply an arbitrary lexical property. This idea was implicitly captured by the term conventional implicature of Karttunen & Peters (1975, 1979), and has been inherited by much of the research on presuppositions. Thus it is usually assumed that while the lexicon specifies, e.g., that know has to presuppose its complement, there is no similar lexical specification for believe.

*I thank Denis Bonnay, Nathan Klinedinst, Daniel Rothschild and Philippe Schlenker for many conversations on various versions, Emmanuel Chemla, Paul Egré, David Nicolas, Giorgio Magri for comments on a (longer) draft and Benjamin Spector, David Beaver, Mandy Simons, Sigrid Beck, François Recanati, Chris Barker, Laurent Bartholdi, Danny Fox, Eytan Zweig, Nicholas Asher, Ofra Magidor, Kyle Rawlins, Jacopo Romoli, Anna Szabolcsi, Matthew Towers and the audiences at LoLa10, The Aboutness Workshop in Toulouse, JSM10, University of York, University of Tübingen and SALT20 for very helpful comments and questions at various stages of this research. All remaining errors are my own. This research was supported by the ESF (Euryi grant to P. Schlenker), the Hungarian National Science Fund NF-73537 and The Mellon Foundation.
There are reasons however to be dissatisfied with this answer. First, as was pointed out by Levinson & Annamalai (1992) and Simons (2001), if presuppositions were simply conventional, they should manifest the property of *detachability*, i.e. it should be easy to find pairs of expressions which share their truth conditions, but differ in their presuppositional behavior. However, it seems that words that express a similar meaning trigger a similar presupposition. Thus (1a) and its synonyms in (1b) all seem to imply that John indeed used to smoke.

(1) a. Has John stopped smoking?
 b. Has John quit/finished/given up/ceased smoking?

Such examples show that there is a generalization to be captured about what type of meaning can give rise to what type of presuppositions. But they are entirely mysterious given a conventional view of presupposition triggering.

Second, as was argued by Levinson & Annamalai (1992), if presuppositions were purely conventional elements of the non-truth conditional meaning, one would expect there to be translation difficulties and conceptual mismatch when comparing the presuppositional items of different languages. But this is generally not the case. Levinson & Annamalai (1992) offer a detailed comparison of English and Tamil and show that the presupposition triggers in these two unrelated languages are exactly parallel. Such facts argue that presuppositions should follow somehow from the content of presupposition triggers.

Yet how presuppositions could be predicted from the meaning of triggers has been an elusive and rarely-addressed question. While the few attempts in the literature to explain presuppositions of at least certain items provided valuable insights (cf. Sperber & Wilson 1979, Simons 2001, and Abusch 2002, 2010), they either did not make correct predictions or failed to be sufficiently explanatory. Stalnaker (1974) and Schlenker (2010) laid out a blueprint for a triggering mechanism, but did not provide a theory themselves.

This paper offers a predictive mechanism to derive the presuppositions of verbs. The starting point is the intuition, dating back at least to Stalnaker (1974), that the information conveyed by a sentence that is in some sense independent from its main point is presupposed. The contribution of this paper is to spell out a mechanism for deciding what will become the main point of the sentence and how to calculate independence. It is proposed that this can be calculated by making reference to event times. As a very rough approximation, the main point of an utterance is what (in a sense to be defined) has to be about the event time of the matrix predicate and the information that the sentence conveys but is not (or does not have to be) about the event time of the matrix predicate is presupposed. The notion of *aboutness* used to calculate independence will be that of Demolombe & Fariñas del Cerro (2000).
2 Aboutness

The notion of aboutness that I use in this paper is a straightforward extension in terms of possible worlds of the notion of being about an argument worked out by Demolombe & Fariñas del Cerro (2000) for first order logic. (Cf. the Appendix for a summary of Demolombe & Fariñas del Cerro’s (2000) ideas.) The proposal has two parts: the definition of variants of a possible world with respect to an object and the definition of being about an object.

2.1 Variants

We define variants of possible worlds with respect to objects. Roughly speaking, two worlds w and w' are c-variants if they only differ by the properties of the object denoted by c. In this case we need to allow that c-variants differ in the truth assignment to atomic sentences where the expression c appears as an argument of the matrix clause. Let M be a model $\langle W, D, R, \llbracket \rrbracket \rangle$, where W is a set of possible worlds, D is a domain of individuals, $R \subseteq W \times W$ is an accessibility relation on W and $\llbracket [p^n] \rrbracket^w \subseteq D^n$, for any non-logical atomic predicate p^n.

For the purpose of calculating variants, a sentence such as a knows that p at t will be treated as if it had the more simple syntax $K(a)(t)$, where K stands for knows that p. The language is assumed not to contain the identity predicate. We can then define for every possible world $w \in W$, variants w' of w as follows:

- $D_{w'} = D_w$
- $\llbracket x \rrbracket^{w'} = \llbracket x \rrbracket^w$, for each constant or variable symbol x
- if p is a predicate symbol of arity n:
 - if t is an $n+1$-tuple the first n terms of which are from D of L_c and the final element is from W and which contains no occurrence of the constant c, then $\langle [t], w' \rangle \in \llbracket [p] \rrbracket$ iff $\langle [t], w \rangle \in \llbracket [p] \rrbracket$.
 - if an element $\langle d_1, ..., d_n \rangle$ of D^n is such that for every j in $[1, n]$, $d_j \neq \llbracket c \rrbracket$, then $\langle d_1, ..., d_n \rangle \in \llbracket [p] \rrbracket^w$ iff $\langle d_1, ..., d_n \rangle \in \llbracket [p] \rrbracket^w$.

2.2 Aboutness

Given the above notion of variants, let’s define aboutness as follows:

(2) Aboutness

A sentence S is about the object denoted by the constant symbol c iff there are two worlds w and w' in W which are c-variants and $\llbracket S \rrbracket^w = 1$ and $\llbracket S \rrbracket^{w'} = 0$.
Conversely, it is also possible to give a definition of what it means for a sentence to not be about an object c:

\[(3) \quad \text{The property of not-being about}\]

A sentence S is not about the object denoted by the constant symbol c iff for every w, w' in W st. w and w' are c-variants $\llbracket S \rrbracket^w = \llbracket S \rrbracket^{w'}$.

2.3 Examples

The sentence $S = \text{Fido is tired}$ is about Fido iff there are two Fido-variants w, w', st. $\llbracket S \rrbracket^w = 1$ and $\llbracket S \rrbracket^{w'} = 0$. Notice that the definition in (2) quantifies over all worlds, therefore the entailment φ of S that \text{Some individual is tired} is also about Fido, because there are two worlds w, w' which differ only in the properties of Fido and $\llbracket \varphi \rrbracket^w = 1$ and $\llbracket \varphi \rrbracket^{w'} = 0$, e.g. if Fido is the only tired individual in w. In general, sentences expressing existential quantification are about every individual. Similarly, a sentence expressing universal quantification is also about every individual in the domain. Suppose our sentence was \text{Every individual is tired}. Now we can find two worlds which differ solely in the properties of Fido, st. one of these makes the sentence true and the other false: world w in which every individual is in the denotation of the predicate \text{tired}, and another world w' in which every individual except Fido is in this set. Finally, observe that the sentence $\text{Fido is tired or Fido is not tired}$ ($= \varphi$) is not about Fido according to the definition above: This is because since φ is a tautology, it is true in every world.

3 The proposal: some core examples

I follow Stalnaker (1974) in assuming that presuppositions are also part of the entailed meaning. Presuppositions are simply entailments that are in some way distinguished. In this framework a presupposition triggering mechanism can be viewed as a function that takes as its input the bivalent meaning of a sentence S, and outputs one or more entailments of S, those which are also presupposed.

The main intuition behind this paper, similarly to that in Stalnaker 1974, is that entailments of a sentence that are in some sense independent from the main point of the sentence are presupposed. The main point of a sentence is given by those entailments that are by nature about the event time of the matrix predicate.\(^1\) Propositions that describe events that are not (or do not have to be) about the event time of the matrix predicate of S are independent, and hence presupposed.

\(^1\) A predecessor of this idea can also be found in Abbott (2000) who claims that “[t]ypically, the asserted proposition in an utterance will correspond to the main clause of the uttered sentence”. But Abbott does not give further clarifications on this point or present a triggering mechanism.
To calculate this, I will introduce the notion of a canonical temporal representation of a sentence. Canonical temporal representations of sentences (CT(S)) are sentences in which the independent tense argument positions of predicates are filled by choosing any constant of the appropriate type. Let’s call the temporal arguments replaced with new constants during the construction of CT(S) representations TS-arguments, and the constants that replace them CTS-arguments. We can now define the CT(S)-equivalent of an entailment p of S as follows:

(4) The CT(S)-equivalent p' of an entailment p of S (abbreviated $p =_{\text{CTS}} p'$) is
 a. p itself, if (the linguistic form of) p does not contain TS-arguments
 b. if p contains TS-arguments, then p' is the proposition that p can be turned into by replacing its TS-arguments with the corresponding CTS-arguments.

The triggering mechanism predicts an entailment p of S to be presupposed if it has a CT(S)-equivalent proposition p' that is not about the event time of the matrix predicate of CT(S).

(5) The triggering mechanism for verbal presuppositions
 An entailment p of S is presupposed if S has a CT(S) representation such that the CT(S)-equivalent of p is not about the event time of the matrix predicate of CT(S).

3.1 Background assumptions

I assume that event times denote salient intervals whose value is assigned by the context. As such, they are rather like pronouns (cf. Partee 1973). For convenience the tense argument is represented in the syntax as well. I use a type-theoretical system which in addition to the basic types e and t contains a type i whose domain is the set of time intervals. In this system predicates have an extra argument slot for time, thus what are usually assumed to be one place predicates such as intransitive verbs are going to be two place predicates, taking an individual and a time argument:

(6) $[[\text{is tired}]]^{w,g} = \lambda t_i. \lambda x_i. x$ is tired at t in w

Tense morphemes are time variables that saturate the time argument slot of predicates. The denotation of this variable is given by the assignment function g supplied by the context, which assigns it an element from the domain of time intervals. E.g. the sentence *John is tired at t_2* is true iff John is tired at the time assigned to t_2 by g.

2 I thank E. Chemla for suggesting (p.c.) to try to run the triggering mechanism on a more abstract representation than the sentence itself, to avoid the problems of a previous version of this proposal.
Triggering verbal presuppositions

That is, whatever the value of t_2, it denotes the time of John being tired.

From the syntactic representation of sentences we can now create canonical temporal representations of sentences (CT(S)). These are sentences in which the independent tense argument positions of predicates are filled by choosing any constant of the appropriate type. The identity of the constants chosen for canonical representations is not relevant, except that the time they refer to should exist in the model. Thus in canonical representations of sentences accidental co-temporal relations might be destroyed, although some lexically specified co-indexing relations have to be preserved, cf. Section 3.4.\(^3\) Cf. some examples of CT(S) representations below:

\[(7)\]

a. John sees Bill (at time t_1)

 CT(S): sees (John, Bill, t

b. John believes (at time t_1) that he is tired (at time t_1)

 CT(S): believes (John, tired (John, t'), t

c. John hopes (at time t_1) to be promoted (at time t_1)

 CT(S): hopes (John, promoted (John, t'), t

d. John stopped smoking (at time t_1)

 CT(S): stopped (John, smoking, t

I will call the temporal arguments replaced with new constants during the construction of CT(S) representations TS-arguments, and the constants that replace them CTS-arguments. The former are represented using subscripts, and the latter by primes.

3.2 Factive presuppositions

This section spells out how factive presuppositions can be derived. The example I look at in detail is the verb *know*, but it will be shown that the same analysis carries over to the whole class of factive verbs. Some other members of this class in English include *realize, discover, notice, recognize, find out, remember, forget, be aware that, admit* and a subclass of sensory factives *sense, see, smell, hear, detect, observe*. A major subclass of factive verbs is the class of emotives, factive verbs used primarily to convey the subject’s emotional attitude towards information. This class includes

\(^3\) Another case where a dependency between two tenses has to be assumed is the case of (restrictive) relative clauses, where the CTS representation will have to use the same variable in the relative clause and the matrix clause. This is not unnatural considering that temporal dependencies in clausal complements and relative clauses are generally different. A well-known example is the sequence of tense phenomenon, which shows wildly different properties in embedded relative clauses and clausal complements.
predicates such as regret, be annoyed, be upset, be glad, be happy.\footnote{I assume thus that emotive factive verbs such as regret are just like cognitive factives in presupposing the truth of their complement, in accordance with Kiparsky & Kiparsky (1970), Karttunen (1971), Gazdar (1979) and in contrast with Klein (1975), Egré (2008), Schlenker (2003).}

Suppose that our sentence S is the following example:

(8)
a. S: John knows (at time t_1) that Mary is tired (at time t_1)
b. $\text{CT}(S)$: know (John, t, tired (Mary, t'))

Let K be the set of all the propositions that (8a) entails ($\cap K = S$). Intuitively, there are two types of entailments in K: logical entailments, and entailments that can be derived from the meaning of S. I will call the second type of entailment lexical entailment, but this name should not be taken to imply that this type of entailment is necessarily encoded in the lexical meaning of words. Lexical entailments are not given in a formal way: they are only available to speakers by inspecting their intuitions about the lexical meaning of predicates and the meaning of S itself. Lexical entailments express restrictions about which possible worlds are in W, rendering some worlds ‘impossible’. Eg. the fact that ‘x believes p’ is a lexical entailment of ‘x knows that p’ is the restriction that there is no world in W in which ‘x knows that p’ is true, but ‘x believes that p’ is false.

If we only looked at logical entailments, not taking the restrictions on possible worlds imposed by lexical entailments into account, then if S is about a matrix time t, and S is atomic, then its non-tautological logical entailments are also about t.\footnote{Thanks to T. Williamson (pc.) for helping me to see that an older, more complicated reasoning about logical entailments was neither necessary nor correct.} Here is why. If the elements of W are assumed to be derived via the combinatorial possibilities of the elements in the language, and Q is not a tautology, there is a w that makes $[S]^w=0$ and $[Q]^w=0$. Since S is about t, and there are no necessary connections among predicates, there is a possible world corresponding to every possible combination of predicates and arguments, and so there is a t-variant w' of w st. and $[S]^{w'}=1$. Since S entails Q, $[Q]^{w'}=1$. Thus no non-tautological logical entailment is predicted to be presupposed. Tautological entailments of S are predicted to be presupposed, as these are not about the matrix time, but this is harmless.

Thus it is not necessary to look at purely logical entailments of S at all to find presuppositions. However, we need to look separately at lexical entailments, because given the restrictions that these impose on the set W, it is now possible that no t-variants w and w' can be found such that for a given lexical entailment Q, $[Q]^w=0$ and $[Q]^{w'}=1$. The reason is that if a sentence $P(a)$ lexically entails some other sentence $P(b)$, there are no worlds in which $P(a)$ is true but $P(b)$ is false. Therefore the above reasoning will not go through any more. This means that we need to consider lexical entailments one by one, and check if they are about the matrix time t
or not. (But notice that lexical entailments are not equivalences, so it is still possible to show that that S itself is about its matrix predicate.)

Let’s return to example (8a). Lexical entailments are not given in a formal way: they are only available to speakers to by inspecting their intuitions about the lexical meaning of predicates and the sentences composed from these predicates. Below is a list of some intuitively plausible lexical entailments of (8a).

(9) Some lexical entailments of *John knows at t_1 that Mary is tired at $t_1*

a. φ = John knows at t_1 that Mary is tired at t_1

b. ψ = John believes at t_1 that Mary is tired at t_1

c. χ = Mary is tired at t_1

d. ξ = John’s belief is justified at t_1

NB: It is not claimed here that a sentence such as (8a) can be ‘factorized’ into its constituent lexical entailments, nor is it assumed that there is a solution to the equation $John$ knows that $p = John$ believes that $p \land p \land X$. (cf. e.g. Williamson 2002, Yablo 2008 etc. on the dangers of such an assumption.) The only claim made is that speakers have intuitive access to plausible lexical entailments. The above list merely provides examples of such entailments and is not meant to be an exhaustive definition of the meaning of S.

Which of the above lexical entailments, if any, are predicted to be presupposed? Here is the idea. Let’s take a CT(S) representation of (10) (given in (10a)) such that t_1, t and t' all refer to non-overlapping intervals. The complement of know, which denotes the proposition that it is raining, is entailed by S. Since the CT(S) equivalent of this entailment is not about the matrix event time t of CT(S), it is predicted to be presupposed.

(10) S: John knows (at t_1) [that Mary is tired (at time t_1)]

a. CT(S): knows (John, tired(Mary, t'), t)

b. $S \models$ tired (Mary, t_1)

c. tired(Mary, t_1) = CTS tired(Mary, t')

d. tired(Mary, t') is not about t (by (2))

e. therefore, S presupposes that Mary is tired at t_1.

Compare this with the entailment of S that John believes that it is raining. This proposition is not predicted to be presupposed, because its corresponding CT(S)-entailment is necessarily about the matrix event time of its CT(S):

(11) S: John knows (at t_1) [that Mary is tired (at time t_1)]

a. CT(S): knows (John, tired(Mary, t'), t)

b. $S \models$ believes (John, t_1, Mary is tired (at t_1)).
It seems that no other entailment in (9) is such that its CTS-equivalent would not be about \(t \). But if we found other lexical entailments whose CTS-equivalents would not be about the event time of some \(\text{CT}(S) \), these entailments would also be predicted to be presupposed. (Cf. section 3.5)

Notice that existential entailments that we get by replacing the matrix tense argument in the original sentence by an existentially bound tense variable are predicted to be about the matrix tense of the \(\text{CT}(S) \). This is because existentially-quantified sentences are about every individual in the domain (cf. section 2.3). Thus for any \(\text{CT}(S) \), the CTS-equivalent of the existential entailment is be about the matrix CTS-argument as well. Therefore this entailment is not predicted to be presupposed.\(^6\)

Existential entailments are one of the main reasons why Demolombe & Fariñas del Cerro’s (2000) system of *aboutness* is used in this paper.

3.3 Change of state verbs

The section looks at regular change of state verbs such as *stop*. As in the previous discussion, the reasoning presented in connection with these predicates will carry over to the whole class of change of state predicates.\(^7\)

As was argued above, to predict which entailments of the sentence will be presupposed we only need to consider the set of lexical entailments. Consider (12), in which \(t_1 \) denotes the event time of the predicate, in this case the time of the stopping. Let’s assume that the lexical entailments of (12) are \(\varphi \), \(\psi \) and \(\chi \):

\[
\begin{align*}
(12) \quad & \text{John stopped smoking at } t_1 \\
& \quad \text{a. } \varphi = \text{John does not smoke at } t_1 \\
& \quad \text{b. } \psi = \text{John smoked at } t_2 \text{ (where } t_2 \text{ is some contextually-given interval before } t_1) \\
& \quad \text{c. } \chi = \text{John stopped smoking at } t_1
\end{align*}
\]

The event time of \(S \) is denoted by \(t_1 \). Its denotation is given by the contextually supplied assignment function \(g \), which assigns it an element from the domain of

\(^6\) In the case of sentences such as *John knows that sometimes he is tired*, it has to be assumed that the the \(\text{CT}(S) \) construction mechanism replaces the temporal adverb itself.

\(^7\) Cognitive change of state verbs such as *discover* work on the one hand as regular change of state verbs (presupposing the truth of a previous state), and on the other hand as factive verbs (having a factive presupposition).
time intervals. In this example, the event time denotes the interval that starts just before the onset of non-smoking, and goes on for a certain, potentially very short time. In some other cases, it might be reasonable to assume that the event time also includes a longer segment of the stage where the previous activity is still going on. This second option might be more intuitive with gradual transitions, e.g. stop the car. However, even in this second case the sentence also entails that the previous state held before the event time. Notice that this contrasts with the inference that the final state continues to hold, which is not an entailment. This is shown by the difference in the acceptability of the examples in (13) below.

(13) a. #John stopped smoking, but he has never smoked before.
 b. John stopped smoking, but then he started again.

In the case of factive verbs it was the canonical temporal representation of the sentence that allowed the event time of the embedded clause to be different from that of the matrix event time, and thus presupposed. In the case of change of state verbs some entailments are lexically specified to be true at some time other than the event time. This is what happens in (12), where the lexical entailment that John used to smoke at some time preceding the event time comes from the lexical semantics of the change of state verb. As the CT(S) equivalent of this entailment is itself, and thus not necessarily about the event time of CT(S), it is presupposed.

(14) a. S: John stopped smoking (at \(t_1 \)).
 b. CT(S): stopped (John, smoke, \(t \))
 c. \(S \models \text{smoke}(j, t_2) \), where \(t_2 \) refers to some time interval preceding \(t_1 \)
 d. \(\text{smoke}(j, t_2) =_{\text{CTS}} \text{smoke}(j, t_2) \) (because \(t_2 \) is not a TS-argument)
 e. \(\text{smoke}(j, t_2) \) is not about \(t \) (at least for some CT(S))
 f. therefore, \(S \) presupposes that John used to smoke

The rest of the lexical entailments in (12) are all about \(t_1 \), and thus their CT(S)-equivalent will be about \(t \). Since the closure of lexical entailments under logical consequence does not introduce any new presuppositions, no other entailments of (12) are predicted to be presupposed.

One might wonder about the entailment that John smoked at some time \(t_2 \) before \(t_1 \). This proposition is technically about the arguments, according to the definition of aboutness. Doesn’t it express an equivalent proposition to (12b)? Since possible worlds are defined by the combinatorial possibilities in the language, they in fact do not express logically equivalent propositions. The two might be contextually equivalent, there is nothing however in the present system that would prohibit some proposition entailed by a sentence \(S \) to be a presupposition, while a contextually equivalent proposition is not.
3.4 Implicative verbs

As Karttunen (1971) has showed, implicative predicates such as manage, remember, see fit are veridical, but they do not presuppose their complement. This would be a problem for the present proposal if we assumed that the temporal argument of the embedded clause can be replaced by a different CTS argument from the one that replaces the matrix CTS argument, because in that case the proposal would predict that (14) should presuppose the truth of its embedded complement.8

(15) a. John managed to solve the problem.
 b. John saw fit to apologize.
 c. John remembered to lock the door.

However, as Karttunen shows, in these cases the tense of the embedded predicate is not independent of the matrix tense, as it cannot be modified by independent temporal adverbials:

(16) a. #John managed to solve the problem next week.
 b. #John saw fit to arrive day after tomorrow.
 c. #John remembered to lock his door tomorrow.

The above facts contrast with other veridical predicates that combine with infinitival clauses, where such modification is available:

(17) John was happy to arrive tomorrow.

This means that in the case of implicative verbs the temporal argument of the embedded clause is keyed to the tense of the matrix verb, and therefore it cannot be replaced by a new constant when the CTS is computed. One way to implement this idea is to assume that the lexical semantics of implicatives specifies that the tense argument of the embedded clause is obligatorily co-indexed with the tense argument of the matrix clause. This is similar to the treatment of the controlled subject of embedded infinitival clauses, which also has to be co-indexed with the matrix subject:

(18) Johni managed t i [PROi solve the problem t j]

The CTS construction mechanism now cannot replace the embedded tense argument with a new constant: it has to be replaced with the same constant as the one that replaces the matrix tense. As a result, the embedded complement will not be predicted to be presupposed by the present system.

8 Thanks to Jacopo Romoli and Kyle Rawlins (pc.) for bringing this issue to my attention.
3.5 Sortal presuppositions: adding common knowledge

The triggering mechanism proposed in the previous sections was viewed as a function that takes as its input the bivalent meaning of a sentence \(S \), and outputs one or more entailments of \(S \). This section looks at cases that might necessitate casting a wider net. In certain cases at least, the input to the triggering mechanism is not only the set of entailments of the literal meaning of a sentence \(S \), but the set of entailments of \(S \) given general common knowledge.

Suppose we added the entailment (19b), as seems reasonable, to the set of lexical entailments of (19a):

\[
\begin{align*}
(19) & \quad a. \text{ John knows that Mary is tired at } t_1 \\
& \quad b. \text{ John is sentient at } t_1
\end{align*}
\]

According to our rules, the CTS equivalent of (19b) is about the matrix event time of the CT(S) representation of (19a). Thus (19b) is not predicted to be a presupposition.

However it was argued in the literature (cf. Simons 2001, e.g.) that the proposition that John is sentient is in fact a presupposition of sentences such as (19a). Indeed it seems that selectional restrictions in general should be treated as presuppositions (cf. McCawley 1968, Magidor 2007 and Asher 2010 for recent discussions). Further, as most if not all sortal presuppositions are about the event time of the matrix predicate, it looks as if our system is unable to generate sortal presuppositions.

We might ask however whether (19b) itself corresponds to the sortal presupposition of \(S \). It seems more likely that the true sortal presupposition of \(S \) is not the episodic statement in (19b), but rather the characterizing statement in (20).

\[
(20) \quad \text{John is sentient (in general)}
\]

Is (20) itself a lexical entailment of (19a)? It is hard to tell, but we might safely assume that at least it is an entailment of (19b) *given common knowledge* (cf. Magri 2009). I.e. given world knowledge, speakers can be expected to assume that if John is sentient at a certain time \(t \), then he is sentient in general. Given this it is also safe to say that (20) is an entailment of (19a) *given common knowledge*. The present proposal *does* predict (20), the contextual entailment of (19a) to be a presupposition. This is because characterizing statements such as the above are typically assumed (cf. Chierchia 1995) to contain an instance of the generic operator \(\text{Gen} \):

\[
(21) \quad \text{Gen} s [C(j,s)] [\text{sentient } (j,s)]
\]

The variable \(C \) in the restriction of \(\text{Gen} \) expresses the property of being at an arbitrary location. Thus (21) expresses that whenever John might be located in some situation \(s \), he is a sentient being in \(s \). For our present purposes, I will simplify the
above by saying that the Davidsonian argument simply ranges over times \(t \). Generic statements cannot be simply equated with universal quantification because they allow exceptions. Thus (22), but not (23) is contradicted by the existence of some after-dinner time at which John does not smoke.

\[
(22) \quad \text{John smokes after dinner} \\
\quad \text{Gen} \ t \ [\text{after-dinner}(t) \land \text{C}(j,t)] \ [\text{smokes}(j,t)]
\]

\[
(23) \quad \text{John always smokes after dinner} \\
\quad \forall t \ [\text{after-dinner}(t) \land \text{C}(j,t)] \ [\text{smokes}(j,t)]
\]

Recall from section 2.3 that according to our definitions universal statements are about every individual. By the same reasoning the universal statement in (23) above is about every individual in the domain. However, as was argued above, generic statements are not equivalent to universal statements about times \(t \) in a given domain. The CTS equivalent of the contextually entailed generic statement is itself. But we cannot conclude that a generic statement such as (20) is about the event time of the CT(S). So while the CTS equivalent of the entailment (24a) is about the event time of the CT(S) of (19a), and is therefore not presupposed, the contextually entailed generic statement in (24b) cannot be proved to be about the matrix event time of the CT(S) of (19a), and is therefore presupposed.

\[
(24) \quad \begin{align*}
\text{a. John is sentient at } t_1 \\
\text{b. John is sentient (in general)}
\end{align*}
\]

Sortal presuppositions of a sentence \(S \) can then be predicted by the present system as presuppositions that arise from the set of entailments of \(S \) given by common knowledge.\(^9\)

3.6 Adding contextual entailments

The triggering mechanism as presented so far takes general common knowledge into account, as argued in section 3.5, but otherwise it is not sensitive to the context in which the sentence appears. This is in contrast with Stalnaker (1974) and Simons (2001) who assume that the triggering mechanism is a pragmatic mechanism operating on complex sentences, and also with Schlenker (2010) who argues that the triggering mechanism should be sensitive to both the linguistic and extralinguistic context in which the expression triggering the presupposition appears. This last section considers a possible extension, whereby the triggering mechanism might

\(^9\) Similar considerations might apply to the presuppositions of verbs such as manage, whose presupposition might be argued to express a dispositional statement as well: \textit{John managed to solve the exercise} presupposes that the exercise is hard for John (in general).
Triggering verbal presuppositions

operate on a set contextually specified entailments. Thus the system can predict presuppositions not only based on the meaning of the expressions involved, but based on the literal meaning of the expressions together with the linguistic and extra-linguistic context in which these expressions appear.

Schlenker (2010, 2008) argues that there are expressions, which he terms ‘part-time triggers’, that trigger a presupposition only when they appear in certain contexts. An example is the verb *announce*. In some contexts, it does not entail the truth of its complement and in these contexts it does not presuppose the truth of its complement either. In other contexts, it entails and presupposes the truth of its complement:

(25) Mary has announced that she is pregnant
 a. *Mary is 30 years old and she is expected to be reliable.*
 (The context entails the truth of the embedded proposition.)
 \rightarrow (25) presupposes that Mary is pregnant
 b. *Mary is 7 years old and is not expected to be reliable.*
 (The context does not entail the truth of the embedded proposition.)
 \rightarrow (25) does not presuppose that Mary is pregnant

As Schlenker points out, the verb *announce* contrasts minimally with the verb *inform*, which seems to lexically entail and presuppose the truth of its complement in the above context. The mechanism proposed in this paper can be extended to handle the above facts. What is needed is to allow contextual entailments to enter the pool of candidate entailments for presuppositions. Then if the embedded proposition is contextually entailed, it is also predicted to be presupposed. Otherwise it isn’t.

4 Discussion

4.1 Predictions

In general the theory makes the prediction that verbs that entail the truth of their propositional complement will also presuppose the truth of this complement, unless it is lexically specified by the matrix verb that the tense argument of the embedded complement has to be coindexed with the matrix tense. This is because there will always be a CT(S) representation such that the CTS-equivalent corresponding to the proposition denoted by the complement is not about the event time of the CT(S). The difference then between a factive verb such as *know* and a non-factive one such as *believe* reduces to the fact that the latter do not entail that their complement is true, i.e. their veridicality.

Further, the system makes the prediction that any entailment that does not contain a matrix TS-argument and whose tense argument is not quantified over is presupposed. Conversely, entailments of a sentence \tilde{S} whose temporal argument is the
TS-argument corresponding to the matrix CTS argument of the CTS representation are not predicted to be presupposed. Therefore presuppositions of change of state verbs are predicted to be about some time other than the event time of a change of state verb. Further, it is also predicted that entailments of change of state verbs that are not about the event time cannot be not presupposed. Recall that the inference we might get from stop that the final state continues to hold is not itself an entailment, as was shown in (13).

Also, it is generally predicted that entailments of atomic sentences that are not about the event time will be presupposed. An example might be the sentence with the simple transitive predicate kill such as (26). Some plausible lexical entailments might be \(\varphi, \psi \) and \(\xi \) as shown below.

\[(26) \quad \text{John killed Bill}
\]

a. \(\varphi = \text{John killed Bill at } t_1 \)

b. \(\psi = \text{Bill is dead at } t_1 \)

c. \(\chi = \text{Bill was alive at } t_2 \) (where \(t_2 \) refers to some time before \(t_1 \))

Among the above, \(\chi \) is not about \(t_1 \). This means that for any \(\text{CT(S)} \), \(\chi \)’s CTS-equivalent will be itself and therefore it will be possible to find \(\text{CT(S)} \) representations such that \(\chi \) is not about their event time. Notice again the contrast between the entailment of (26) that Bill was alive at \(t_2 \) and the inference that Bill continued to be dead after the event time of the killing. While the first is indeed a lexical entailment, the second is only a pragmatic inference that follows from our world knowledge.

The present theory predicts presuppositions based on the meaning of atomic sentences and predicates. But it is a separate question of why predicates happen to entail what they entail, for example why know but not believe happens to be veridical. Answering this second question would mean giving a general theory of concept formation.

4.2 Symmetric pairs?

This paper also predicts that atomic sentences that have the same meaning should trigger the same presuppositions, which seems largely correct. Some examples in the literature might seem though to challenge this prediction. Fillmore (1971) argued that there was a near-symmetry between the predicates accuse-criticize, in that ‘\(a \) accused \(b \) of \(p \)’ presupposed that \(a \) judged the action denoted by \(p \) bad, and asserted that \(b \) did \(p \), ‘\(a \) criticized \(b \) for \(p \)’ presupposed that \(b \) did \(p \) and asserted that \(a \) indicated that \(p \) was bad. As was pointed by e.g. Sperber & Wilson (1979), these two verbs are not actually synonymous. Another such pair was put forth by Abusch (2002, 2010). She has argued that the pairs be right-be aware are symmetric.
Triggering verbal presuppositions

in the following way: A sentence such as *John is right that dinner is ready* asserts the truth of its complement and presupposes that John believes that dinner is ready, while the sentence *John is aware that dinner is ready* asserts that John believes that dinner is ready and presupposes its complement. As pointed out in Schlenker 2008, 2010, however, it seems that syntactically the two do not behave alike, and that the sentence *John is right that dinner is ready* is syntactically more complex, akin to *John is right in claiming that dinner is ready*. If these arguments are on the right track, to date no really convincing cases of symmetric pairs have been found.

APPENDIX: Demolombe and Fariñas del Cerro (2000)

The intuitive idea of Demolombe & Fariñas del Cerro (2000) is that the truth value of a sentence that is not about an entity should not change if we change the truth value of the facts about that entity. To capture this intuition, they first introduce the notion of variants of an interpretation with respect to an object. Given this, the property of a sentence being about an object can be defined.

The set of variants of an interpretation with regard to an object denoted by constant symbol c is the set of interpretations M^c that only differ from M by the truth assignment of atomic sentences where c appears as an argument. Let L_c be a first order predicate calculus language that contains the constant c and does not contain the identity predicate. M' is a c-variant of a model M iff it meets the constraints listed below:

- $D_{M'} = D_M$
- $i_{M'} = i_M$, for every variable symbol and constant symbol
- $i_{M'}$ is defined from i_M for each predicate symbol as follows: if p is a predicate symbol of arity n
 - if t is an n-tuple of terms of language L_c that contain no occurrence of the constant symbol c, then $i_{M'}(t) \in i_{M'}(p)$ iff $i_{M}(t) \in i_{M}(p)$.
 - if an element $\langle d_1, \ldots, d_n \rangle$ of D^n is such that for every j in $[1,n]$, $d_j \neq i_M(c)$, then $\langle d_1, \ldots, d_n \rangle \in i_{M'}(p)$ iff $\langle d_1, \ldots, d_n \rangle \in i_{M}(p)$.

M^c will be used to denote the set of c-variant interpretations M' defined from M.

Aboutness can be defined as follows. Let F be a sentence of language L_c. F is not about an object named by the constant symbol c iff for every interpretation M, $M \models F$ iff for every interpretation M' in M^c $M' \models F$.

10 Though cf. Demolombe & Fariñas del Cerro (2000) for some suggestions on how the identity predicate could be handled.
Márta Abrusán

(27) \[\text{NA}(F, c) \text{ holds iff } \forall M (M \models F \text{ iff } \forall M' \in M^c \ M' \models F) \]

A formula \(F \) is about an object named by \(c \) if it is not the case that \(\text{NA}(F, c) \):

(28) \[\text{A}(F, c) \text{ holds iff } \exists M (\exists M' \in M^c (M \models F \text{ and } M' \not\models F)) \]

References

700
Triggering verbal presuppositions

Márta Abrusán
Somerville College
Woodstock Road
OX2 2HD, UK
abrusan@alum.mit.edu