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Abstract In this paper, we explore semantics for comparative epistemic modals that
avoid the entailment problems shown by Yalcin (2006, 2009, 2010) to result from
Kratzer’s (1991) semantics. In contrast to the alternative semantics presented by
Yalcin and Lassiter (2010, 2011) based on finitely additive measures, we introduce
semantics based on gualitatively additive measures, as well as semantics based
on purely qualitative orderings, including orderings on propositions derived from
orderings on worlds in the tradition of Kratzer (1991, 2012). All of these semantics
avoid the entailment problems that result from Kratzer’s semantics. Our discussion
focuses on methodological issues concerning the choice between different semantics.
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1 Introduction

What is the relation between ordinary talk using epistemic modal expressions such
as ‘probably’ and ‘at least as likely as’ and the mathematical theory of probability?
Is Kolmogorovian probability implicated in the semantics of these expressions?
Until recently, the answer was thought to be negative. In an early discussion of
the epistemic modal ‘probably’, Hamblin (1959: 234) wrote: “Metrical probability
theory is well-established, scientifically important and, in essentials, beyond logical
reproof. But when, for example, we say ‘It’s probably going to rain’, or ‘I shall
probably be in the library this afternoon’, are we, even vaguely, using the metrical
probability concept?” Hamblin thought not. Similarly, Kratzer (2012: 25) writes:
“Our semantic knowledge alone does not give us the precise quantitative notions of
probability and desirability that mathematicians and scientists work with.”!

* While writing this paper, we benefited greatly from conversations with Dan Lassiter and Seth Yalcin.
1 Some probability theorists have expressed related sentiments. For example, Koopman (1940: 269-
270) wrote: “Now we hold that such a number is in no wise a self-evident concomitant with or
expression of the primordial intuition of probability, but rather a mathematical construct derived from
the latter under very special conditions and as a result of a fairly complicated process implicitly based
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Semantics for epistemic modals

However, for the semantics of comparative epistemic modals such as ‘at least as
likely as’, accounts that eschew probability have so far proven problematic. Yalcin
(2006, 2009, 2010) has shown that Kratzer’s (1991) semantics, based on qualitative
orderings on propositions derived from qualitative orderings on worlds, not only fails
to validate some desirable inference patterns, but also validates some undesirable
patterns, as does Hamblin’s semantics based on possibility measures. By contrast,
Yalcin shows that a semantics based on probability measures avoids these problems.
Also motivated by entailment problems for the semantics in Kratzer 1991, 2012,
Lassiter (2010, 2011, 2013) proposes a similar probability-based semantics. With
this background, the question naturally arises of whether probability is necessary for
an adequate semantics of epistemic comparatives in natural language.

In this paper, we explore semantics that avoid the entailment problems that result
from Kratzer’s semantics, but that are not based on probability measures. After
some logical preliminaries in §2 and §3, we introduce three kinds of models in §4,
for measure semantics, event-ordering semantics, and world-ordering semantics.
In §5, we review Kratzer’s world-ordering semantics, and in §6, we review Yalcin
and Lassiter’s measure semantics based on finitely additive probability measures.
We then turn to new semantics: in §7, we introduce a measure semantics based on
qualitatively additive measures; in §8, we briefly discuss event-ordering semantics;
and in §9, we introduce a new method of lifting orderings on worlds to orderings
on propositions for world-ordering semantics. All of the new semantics avoid
the entailment problems that result from Kratzer’s semantics. In §10, we discuss
methodological issues concerning the choice between different semantics.

2 Formal setup

To facilitate comparison of different semantics, we focus on a single formal language.
Given a set At of atomic sentences, our language .Z is generated by the grammar

u=pl-¢|(@AQ) |00 (0>0)
where p € At. The intended reading of ¢ > y is ‘@ is at least as likely as y’. We
take V, —, <>, L, and T to be abbreviations as usual, as well as the following:
o>y =(p=>y)A—-(y>¢) ‘@ ismore likely than y’;
ANQ =@ >-@ ‘@ 1s more likely than not’ or ‘probably ¢’.

The technical reading of ¢ will be ‘@ is true at some epistemically possible
world’; and defining [J := —={—, the technical reading of [J¢ will be ‘@ is true at all

on many of the very intuitive assumptions which we are endeavoring to axiomatize. There is, in short,
what appears to us to be a serious rational lacuna between the primal intuition of probability, and that
branch of the theory of measure which passes conventionally under the name probability.”
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epistemically possible worlds’. For the fragment of . without >, we assume that
models are standard relational structures .# = (W,R,V) where W is a non-empty
set of “worlds,” R is a binary “accessibility” relation on W, V: At — @(W) is a
valuation, and the assignment of propositions to expressions is as follows:

[pl” = V(p) [(@ A )] [o]” 0wl
[~ol” = w—lel”:  [Oe]” = {weW|[R(w)n[e]” # 0},

where R(w) = {v € W | wRv} is the set of worlds accessible from w. Hence,

[Ool” = {weW |R(w) < [o]”}).

We say that ¢ is valid over a class of models ¢ iff for all models .# = (W,R,V)
in €, [o]” = W; and ¢ is invalid iff it is not valid. We will restrict attention to
the class of models in which R is a serial relation, i.e., for all w € W, R(w) # 0.
All of our results also easily extend to smaller model classes obtained by further
constraints on R, e.g., the uniformity constraint that for all w,v € W, R(w) = R(v).

As for the intuitive reading of ¢ ¢, according to Yalcin’s (2010: 927) semantics,
O¢ would be read as ‘it might be that ¢’.> But according to Kratzer’s (1991)
semantics, the truth of ‘it might be that ¢’ requires more than ¢ being true at
some epistemically possible world; as explained in §5, ¢ ¢ in the semantics above is
equivalent to @ > | in Kratzer’s semantics, i.e., ¢ is more likely than a contradiction.
As a result of these differences, we will stick with the technical reading of ¢ ¢.

Our main question in this paper is: what should the semantics be for >?

The literature on comparative epistemic modals provides some desiderata for
an adequate semantics to satisfy. Yalcin (2010) presents a list of intuitively valid
patterns, V1-V12, as well as intuitively invalid patterns, 11-I3, which we list in a
condensed form in Figure 1 below, along with the pattern V13, suggested to us by
Daniel Lassiter (personal communication, Lassiter 2013). We can assess different
semantic proposals according to whether they validate V1-V13 and other intuitively
valid patterns, and invalidate I1-I3 and other intuitively invalid patterns. In addition
to this case-by-case analysis of validities and invalidities, we think it is useful to
identify complete logics for the different semantics, for reasons explained in §3.

3 Completeness theorems: what and why?

When the semanticist offers a model-theoretic treatment of some fragment of lan-
guage, this gives rise to predictions about logical relationships among expressions of

2 The “domain semantics” for .Z in Yalcin 2007, 2010 is equivalent to the relational semantics above
assuming the uniformity constraint. See Holliday & Icard 2013b for further discussion of this issue
and of various definitions of consequence considered by Yalcin and others for languages with modals.
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Vi Ap— =A@ Vil (y 2 ¢)—= (Ao — Ay)

V2 Al(pAy) = (ApAAy) VI2 (v =2 0)—= (o =—0)— (y=—v))
V3 A¢p— AlpVy) V13 ((pA-y)> 1) = ((eVy)>v)
V4 o> 1

Vs T>e I (p=y)A(e=x))— (9= (yVy))
V6 0o — Ag 2 (p=-9)—=(p=Vy)

V1 Ao — Qo 3 Ap—(p=>vy)

Figure 1  List of intuitively valid (V1-V13) and invalid (I1-13) patterns.

the language. An analysis is presumed adequate to the extent that these predictions
accord with the intuitions of the common competent speaker of the language. In their
popular textbook, Chierchia & McConnell-Ginet (2001) explain the methodology:

We are capable of assessing certain semantic properties of expressions
and how two expressions are semantically related. These properties
and relationships and the capacity that underlies our recognition of
them constitute the empirical base of semantics. (52)

These “semantic properties” include especially such logical concepts as entailment,
validity, and contradiction. If a typical speaker finds some entailment pattern invalid,
but the semantic analysis predicts it to be valid, that serves as evidence against
the analysis. Conversely, if competent speakers find a pattern clearly valid, the
semantic analysis will ideally predict that. While there are a number of unresolved
issues concerning this methodology—e.g., Who counts as a competent speaker of a
language?—we would like to raise a constructive methodological point.

Given a language and a class of models, in order to see what the predictions
about entailment and validity in fact are, it is illuminating to prove completeness
theorems. Such results isolate a few key principles from which all other validities
and entailments can be derived, thus allowing a clearer view of what the relevant
predictions are. Specifically, if we have a formal system L, i.e., a set of axioms
in our language together with rules of inference, then a soundness theorem with
respect to some class % of models states that everything derivable from L is valid
over . A completeness theorem states that if some expression is valid over %,
then it is derivable from L. In what follows, we present a number of completeness
results—some from the logic literature, some of our own results—that we believe
shed light on recent work on epistemic modality. As a warm-up, below we state two
standard completeness theorems for the basic semantics for ¢ in §2.
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Figure 3  Logical landscape.

Theorem 1 The logic K in Figure 2 is sound and complete with respect to the class
of relational models as in §2; and the logic KD in Figure 2 is sound and complete
with respect to the class of serial relational models.’

Insofar as > in our formal language corresponds to the ordinary English locution
‘at least as likely as’, the completeness results to be stated will provide succinct
summaries of the validities predicted by alternative semantic accounts.

In a longer paper (Holliday & Icard 2013b), we explore the logical landscape
shown in Figure 3, where an arrow points from a logic L to a logic L’ iff every
expression derivable from L is also derivable from L’; thus, the weakest logic is W,
and the two strongest logics, which are incomparable with each other, are FJR and
FP.R. In this paper we cover the logics WJR (§5), FP../FP.R (§6), FA (§7), WA
(§8), and WPLR (§9). Before discussing these logics, however, we must introduce
our three main classes of models for >, subclasses of which give rise to these logics.

4 Three kinds of models

In this paper we will consider three kinds of models for epistemic comparatives.
To define these models with convenient notation, given P C W, let P, = PNR(w).
Thus, in the truth definitions below we can write [@]:# instead of [@]# NR(w).

3 K is usually formulated with just one axiom and one rule (usually for [J), but the more fine-grained
formulation in Figure 2 is equivalent (see Chellas 1980: Thms. 4.5, 5.12-14). Note that a rule like
REQ says that if the expression above the line has been derived as a theorem of the logic (and hence
is valid, assuming the logic is sound), then the expression below the line can be derived as a theorem.
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In measure semantics, models are tuples .# = (W,R,V, %, 1) where:

» 7 is a function assigning to each w € W a o-algebra .%,, on R(w), i.e., %,
is a set of subsets of R(w) closed under complementation (relative to R(w))
and countably infinite unions (e.g., the power set algebra @(R(w)));

* u is a function assigning to each w € W a function u,,: %, — [0,1] such
that u,,(0) = 0 and p,,(R(w)) = 1;

* o>yl ={wew | m(lely) = m (w1}

Special classes of measure models are obtained by adding further constraints on (.
In event-ordering semantics, models are tuples .# = (W,R,V, ) where:

 ~ is a function assigning to each w € W a binary relation 2Z,, on &(R(w))
such that for all P C R(w), R(w) 7w P 22 0;

s lo=y]” ={weW|[ol,7 zwv]7}.

Special classes of event-ordering models are obtained by adding constraints on 7,

In world-ordering semantics, there is a “lifting” operation 1 that assigns to each
relational model (W,R,V), world w € W, and binary relation -, on R(w), a binary
relation =}, on #(R(w)), and models are tuples .#Z = (W,R,V, =) where:

e > is a function assigning to each w € W a preorder =, on R(w), i.e., a
reflexive and transitive binary relation;

o>yl = {wew| ol = [vl:}.
Special classes of world-ordering models are obtained by the choice of the operation
1 and by adding constraints on >,,.
5 Kratzer’s world-ordering semantics

The first concrete semantics we consider is Kratzer’s (1991) world-ordering seman-
tics. In Kratzer’s models, 1 is what we call the /-lifting, due to Lewis (1973):

Axl BiffVvbeB,JacA,: ax,b,

recalling that for P C W, P, = P ﬂR(w).4 As stated in §4, on such a world-ordering
semantics, @ > v is true at w iff [@]:Z =L [w]:#. Also observe that on this

4 In Kratzer’s (1991) semantics, R and > are themselves derived from a “modal base” and an “ordering
source.” In Kratzer’s notation, R(w) is (\f(w) and =, is = g(w)- Any R and > can be obtained from
some modal base and ordering source (Lewis 1981), so the valid principles according to Kratzer’s
semantics will be exactly the valid principles over the world-ordering models considered here.
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BT —(L>T)
Tran (¢>y)— (v =2)— (¢=x)) Mon U(¢ — vw) — (v > 9)
J ((pzy)A(e=x)) = (= (vVy)) R Qo< =(L>0)

Figure4 Logic WJR is K plus the above axiom schemas.

semantics, Q@ is equivalent to —(_L > ¢) (and hence ¢ > L, since ¢ > L is Valid).5

Unfortunately, as Yalcin (2006, 2009, 2010) has demonstrated, this semantics
based on Lewis’s [-lifting validates some intuitively invalid patterns and fails to
validate some intuitively valid patterns for ‘at least as likely as’.

Fact1 All of V1-V10, V12, and I1-13, but neither V11 nor V13 (recall Figure 1),
are valid over the class of world-ordering models with Lewis’s [-lifting.

The fact that the /-lifting semantics validates I1 has become known as the “disjunction
problem.” Interestingly, I1 is the key axiom in a complete logic for this semantics.

Theorem 2 (Halpern 2003, Thm. 7.5.1a) The logic WJR in Figure 4 is sound and
complete with respect to the class of world-ordering models with Lewis’s [-lifting.5’

In light of the problems Yalcin raised with using Lewis’s [-lifting for comparative
likelihood, Kratzer (2012: 41) suggests a different method of lifting:

Ak Biff-3b€ B, —A,Na €A, —B,:b>,a,

where b >, a iff b >,, a and a *#,, b. However, as Lassiter (2013) observes, the
k-lifting also leads to a disjunction problem: if the @-worlds are disjoint from the
vV x-worlds, the J axiom still holds, contrary to intuition in concrete examples.
As Kratzer (2012) notes, “which notions of comparative possibility provide the
best match with natural language expressions relating to comparative modal notions
related to probability. . . is still open” (42). We will return to this open question in §9.

5 We can also define Kratzer’s (1991) ‘@ is a good possibility’ (which is true at a world w in . iff
Jy € R(w) VZ € R(W): 2=y =z € [@]#) as =(—¢ > T). However, we cannot define Kratzer’s
‘it must be that @ (Vx € R(w) Iy € R(w): y =, xand Vz € R(w): z =, y =z € [@]¥) in Z. Ttis
noteworthy that if we substitute might @ for Q@ in Figures 4-5, then the axioms Mon and Ex are
invalid according to Kratzer’s (1991) semantics but valid according to Yalcin’s (2010) semantics.
As another example of the same phenomenon, the principle (¢ > ) — might ¢ is invalid according
Kratzer’s semantics but valid according to Yalcin’s semantics. For related observations, see note 8.

6 Halpern’s result is for the fragment of .Z without {, but it is a short step from there to Theorem 2.

7 The D axiom, (J¢ — ¢, is derivable from Mon, BT, and K. The D axiom is also derivable from all
of the logics we consider later (see Figures 5 and 6), so we will not mention it again.
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Ex (B(e <+ ¢ )ADO(y < ') = ((¢ > v) < (
Bot @>1 BT —~(L>T) Tot (¢=y)V(y=0)

Scotty @1 @Y1 ... W = (A (@i = ¥0) = (Yo = @n))

i<n

Figure 5 Logic FP, is K plus the axioms above; FP., is given by the axioms of
FP, for all n € N; and FP.R is FP., plus the axiom R in Figure 4.

6 Finitely additive measure semantics

Given the problems raised for Kratzer’s semantics in §5, Yalcin (2010) and Lassiter
Lassiter (2010) propose a measure semantics® using models .# = (W,R,V,F 1) as
in §4 where forallw e W, u,,: %, — [0, 1] is finitely additive, i.e., for all A, B € %,

if ANB =0, then u,,(AUB) = u,,(A) + tyw(B).
Finitely additive measure semantics avoids the problems with Kratzer’s semantics.

Fact 2 All of V1-V13, and none of I1-13, are valid over the class of finitely additive
measure models.

The complete logic for finitely additive measure semantics was identified by
Segerberg (1971) and Gérdenfors (1975), building on the work of Scott (1964).

Theorem 3 (Segerberg 1971; Gérdenfors 1975) The logic FP.. in Figure 5 is sound
and complete with respect to the class of finitely additive measure models.

The notation @y ... @,Ey ...y, in Scott, is an abbreviation for a long expression
of .Z, defined by Segerberg (1971: 342), which is true at a world w iff for every

8 Although not at issue here, there is a difference between Yalcin and Lassiter’s semantics for ‘might’
and ‘possibly’. Yalcin (2006, 2007) considers a probabilistic semantics for ‘might’/‘possibly’
according to which: (i) might @/possibly ¢ is true at w iff w,, ([@]#) > 0. However, his preferred
semantics (Yalcin 2007, 2010) is equivalent to the semantics for ¢ in §2, assuming the uniformity
constraint on R: (ii) might @/possibly @ is true at w iff R(w) N [@]# # 0. Lassiter (2010: §4.4) adopts
(1) as his semantics for possibly @, and following Swanson (2006), Lassiter (2011: §3.8.2) adopts the
following semantics for might @: (iii) might @ is true at w iff w,,([@]#) > @ for a threshold 6 (so
must @ is true at w iff w,, ([@]#/) > 1 — ). Note that the axioms Mon and Ex from Figures 4-5 and
the principle (¢ > ) — Q@ are valid according to (i) and (ii), but invalid according to (iii) (if 6 > 0),
in agreement with Kratzer might ¢ (recall note 5). Also note that the principle 09 — (¢ > L) (cf.
axiom R in Fig. 4) is valid according to (i) and (iii), but invalid according to (ii), and the right-to-left
direction, (¢ > 1) — O, is valid according to (i) and (ii), but invalid according to (iii) (if 6 > 0).

521



Holliday and Icard

world v € R(w), the same number of ¢;’s are true at v as y;’s, i.e.:

Y| = 3

{ili<nvelo] {ili<nvelwl

Using the definition of finite additivity, one can prove that all instances of the Scott
schemata are valid over finitely additive measures. However, whether it is desirable
for a semantics for ‘at least as likely as’ in ordinary language to validate these
schemata is a different question, which we discuss in §10. As we show in §7, the
Scott schemata are not necessary to derive the intuitively valid patterns V1-V13 in
Figure 1. To appreciate the strength of the Scott schemata, it is noteworthy that they
generate an infinite hierarchy of stronger and stronger logics, with FP., at the top.

Theorem 4 (Scott & Suppes 1958) For every n > 1, FP,,, | is a strictly stronger
logic than FP,; in particular, not all instances of Scott, | are theorems of FP,,.

Finally, for comparison with the semantics of §9, note that the axiom R in Figure
4 1s valid over models in which for all w € W, u,, is regular in the sense that for all
A€ %, if A #0, then u,,(A) > 0. The axiom R is equivalent to 0@ <> (¢ > 1),
the left-to-right direction of which is just the regularity condition. Indeed:

Theorem 5 The logic FP..R in Figure 5 is sound and complete with respect to the
class of regular finitely additive measure models.

7 Qualitatively additive measure semantics

Let us consider a measure semantics with models .#Z = (W,R,V,.% i), as in §4,
where p,,: %, — [0, 1] also satisfies what we will call qualitative additivity, the
condition that for all A, B € .%,,:

uw(A) > uw(B) iff .LLW(A _B> > .LLW(B_A)a

which corresponds to the axiom (¢ > y) <> ((@ A—y) = (Y A—9)).

Qualitative additivity is often stated in the equivalent form: forall XY, Z € .%,,, if
(XUY)NZ =0, then u,,(X) > (YY) < uy(XUZ) > u,, (Y UZ), which corresponds
to the axiom ~O((@V y) A x) = (@ = y) < ((9V ) = (¥V X))

To see the motivation behind qualitative additivity, observe that the sentence (1)
is intuitively equivalent to the simpler (2):

(I)  Itis at least as likely that [one of Brazil or Qatar will win the World Cup]g\/y
as it is that [one of the U.S. or Qatar will win the World Cup]yy.

) It is at least as likely that [Brazil will win the World Cup]y as it is that [the
U.S. will win the World Cup]y,.
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Ex (O(@ <+ ¢ )AO(y &y
Bot ¢>1 BT ﬁ( >T
(v=x)—=(0=2)
(Mﬂ/f) Z (Y A—9))

z
s
\Y,
s
< o~

Tran —(
) (

Figure 6 Logic FA is K plus the above axiom schemas.

Moreover, qualitatively additive measures pass all the checks from Figure 1.

Fact 3 All of V1-V13, and none of I1-13, are valid over the class of qualitatively
additive measure models.

As Theorem 6 shows, the class of qualitatively additive measures has a simple logic,
the axioms of which appear intuitively justifiable.® Indeed, the axioms of FA have
formed the standard base system for “qualitative probability” since de Finetti 1949
(see, e.g., Fine 1973: §2; Fishburn 1986; Narens 2007: §4).

Theorem 6 The logic FA is sound and complete with respect to the class of quali-
tatively additive measure models (see Holliday & Icard 2013b for a proof).

Interestingly, we can compare the logic FA of qualitatively additive measure models
with the logic FP., of finitely additive measure models as follows.

Fact 4 (van der Hoek 1996) The logic FA is equivalent to the logic FP5.

A question naturally arises from the foregoing results: what considerations
about natural language could compel us beyond FA/FP3 and qualitatively additive
measures, all the way up to FP., and finitely additive measures, for an adequate logic
and semantics for ‘at least as likely as’ in English (as opposed to, say, for probability
theory in science)? We will return to this methodological question in §10.

9 Tot may be an exception. Keynes 1921: §3 is a classic source of arguments against totality and the
numerical measurability of all propositions’ probabilities. As Fine (1973: 18) notes, “the requirement
that all events be comparable is not insignificant and has been denied by many careful students of
probability including Keynes and Koopman.” Lassiter (2011: 81) suggests allowing incomparabilities
in a semantics based on sets of measures, so ¢ > y is true iff all measures in the set give as great a
value to @ as to Y. For results on the sets-of-measures approach, see Holliday & Icard 2013b.
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8 Event-ordering semantics

We will not say much about the event-ordering semantics from §4 here, except for
the obvious: one can obtain any logic for ‘at least as likely as’ that one likes by
putting appropriate constraints on the orderings -, of propositions. For example,
the following are the semantic constraints corresponding to what we call the logic
WA (Holliday & Icard 2013b), which Gaifman (2009: 51) considers to be the “hard
core for the logic of uncertain reasoning,” obtained from FA by dropping Tot:'°

(non-negativity) A -,, 0; (non-triviality) @ Z,, R(w);

(transitivity) if A =, Band B 77,, C, then A -, C;

(qualitative additivity) A =, Biff A— B -,, B—A.
We expect that some would object to this simple event-ordering semantics based
on the view that a likelihood ordering on propositions should not be a primitive in
the model, but rather should be derived from something else, such as a measure or

a world ordering.!! But the question for the latter approach is: can an ordering on
propositions with desirable properties be derived from an ordering on worlds?

9 World-ordering semantics revisited

Having seen in §5 that Lewis’s (1973) method of lifting an ordering on worlds to an
ordering on propositions (intended for comparative possibility) leads to undesirable
results for comparative likelihood, let us consider Yalcin’s (2010: 923) question:
“Is there some better way of extending a preorder over worlds to a preorder over
propositions, one which will get the inference patterns right?” Toward answering
this question, observe that the /-lifting can be equivalently redefined as follows:

A tiv B iff there is a function f: B,, — A,, such that Vx € B,,: f(x) =, x.
Now consider the following modification of the /-lifting:
A =" B iff there is an injection'” f: B,, — A,, such that Vx € B,,: f(x) =, x.

According to the [-lifting, if there is one way that A could happen that is ranked
at least as highly as each of the ways that B could happen, then A is at least as

10 This shows the flexibility of event-ordering semantics: it is easy to drop totality from event-ordering
semantics, whereas totality is built in to basic measure semantics. Recall note 9.

11 Why this should be so is an interesting issue, especially if one wants a purely qualitative semantics
without numerical measures like Kratzer’s.

12 Recall that a function f : B — A is an injection iff for all x,y € B, f(x) = f(y) implies x = y.
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abcd ~' abc ~' abd ~' acd ~' ab ~ ac ~' ad ~
bed ~' be ~' bd ~
cd

abed =" abc =™ abd " acd ™ bced
Y Y

3
ab =" ac "M

2
@[—<Q~]'<ﬁ ['<@‘]'<Q

ad =" ="

¥
3
bc
Y
3 3
bd cd
[
b c =" d =" 0

a " =

Figure 7  Comparison of Lewis’s lifting =/ and the modified lifting =" starting
from a > b > ¢ > d (with relations implied by transitivity omitted).

likely as B—even if there are many more ways that B could happen, which is why
the [-lifting gives the wrong results, e.g., the “disjunction problem.” By contrast,
according to the m-lifting, if every distinct way that B could happen is matched by a
distinct way that A could happen that is at least as highly ranked, then A is at least as
likely as B; and this is the most information about the comparative likelihoods of
propositions that we can extract from our information about the ranking of worlds.

While i{v is always a fotal relation if -, is, this is not the case for =}, which
may allow many incomparabilities. But this is how it should be, for there is simply
not enough information in every total ordering on worlds to completely determine
a total likelihood ordering on propositions. For example, if all we know is that
a >y b - ¢ = d, then we know that {a,b} is more likely than {b,c}, as both of
the liftings imply; but we do not know whether {a} is more likely than {b,c}. The
[-lifting implies that {a} is more likely than {b,c}, but jumping to this conclusion is
a mistake; surely it is consistent with a >, b >, ¢ =, d that {b,c} is more likely
than {a}. Fig. 7 shows the dramatically different results of applying the [-lifting and
m-lifting to this world-ordering (with world-subscripts omitted).

While we leave open whether the m-lifting is a useful tool for semanticists
in analyzing comparative epistemic modals, it is noteworthy that the predicted
entailment patterns of this semantics are almost exactly the same as those of the
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(regular) finitely additive measure semantics from §6,'3 except that the Tot axiom is
not valid over world-ordering models with the m-lifting (recall note 9).

Fact S All of V1-V13, and none of I1-13, are valid over the class of world-ordering
models with the m-lifting.

Where WP.R is the logic obtained from FP..R by dropping Tot, we have:

Theorem 7 (Holliday & Icard 2013a,b) The logic WP.R is sound—and FP.R
is complete—with respect to the class of world-ordering models with the m-lifting.

Whether WP..R is also complete we leave as an open technical question.

10 Discussion

Faced with a panoply of alternative semantic models, what might compel us toward
adopting one over the others? Though we will not venture to answer this question
here, we would like to discuss a number of issues that bear on the question.

10.1 Semantic intuitions

Recall the quotation from Chierchia & McConnell-Ginet (2001) in §3. They state
that the empirical base of semantics is our intuitive grasp of semantic properties and
relations between expressions. As is well known from empirical work in psychology,
if we apply this methodology too naively to expressions of comparative likelihood,
we will end up with no logic to speak of and consequently no adequate model-
theoretic treatment. Tversky (1969) showed that in some cases subjects do not obey
transitivity, and as Tversky & Kahneman (1983) made famous, ordinary speakers
do not even satisfy the basic monotonicity axiom (recall Figure 4), e.g., declaring
¢ Ay to be strictly more likely than ¢ alone. But transitivity and monotonicity are
essential if we want any reasonable semantics based on measures, for example.
Suppose, however, that we can explain away these experimental results in some
way or another. Indeed, suppose that on the basis of our intuitive grasp of entailments
between sentences, we can convince ourselves that the logic of ‘at least as likely as’
is at least as strong as WA, or perhaps FA.'# The question we want to raise here is
whether our basic semantic intuitions might be used to justify principles stronger than

13 It is also noteworthy that unlike the /-lifting, the m-lifting has the following property: if a world-
ordering >, agrees with a measure [, in the sense that v =, u < u,,({v}) > u,,({u}), then the lifted
ordering =" almost agrees with L, in the sense that A =" B = u,,(A) > p,,(B).

14 On a preliminary Mechanical Turk study, subjects unanimously agree with the equivalence between
claims like (1) and (2) in §7, suggesting that principle A is intuitive at least in basic cases.
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A, the qualitative additivity principle. Recall (Fact 4) that FA is equivalent to FP3."
What is the status of the “next strongest” system FP4? In particular, what would be
an example of a prediction about natural language that would distinguish FP4 from
FA? As it turns out, the answer to this question intersects with an interesting episode
from the history of qualitative probability.

De Finetti, who famously held comparative probability judgments to be more
fundamental than numerical probability judgments, once conjectured that the prop-
erties of orderings guaranteed by the logic FA would be sufficient to guarantee
the existence of an agreeing finitely additive measure (de Finetti 1949), or in the
terminology of the present work, that FA is complete with respect to finitely additive
measure semantics. This was shown to be false by Kraft, Pratt & Seidenberg (1959),
who exhibited a particular ordering that is consistent with FA, but does not admit of
an agreeing finitely additive measure and is therefore inconsistent with FP... The

example includes five worlds, W = {a,b,c,d, e}, and is given as follows: 6

{a,e} = {c,d} {b,c} » {a,d} {d} + {a,c} {a,c,d} = {b,e}.

Theorem 8 (Kraft et al. 1959) The ordering above, while consistent with FA, is
inconsistent with FP.,. Moreover, for every model with fewer than five worlds, FA
and FP., coincide, i.e., FA is sound on the model iff FP., is sound on the model.

In fact, it is easy to see that this ordering is ruled out by Scott4 and is thus not even
consistent with FP,. Kraft et al. (1959) showed it is the simplest such ordering.
What does this mean from the perspective of natural language? It shows that
the simplest examples distinguishing FP4 from FA will include at least five atomic
propositions. Here is an example, following the theme of World Cup predictions:

(3)  Itis more likely that one of Argentina or England will win the World Cup
than it is that one of China or Denmark will win.

@ It is more likely that one of Brazil or China will win than it is that one of
Argentina or Denmark will win.

(5) It is more likely that Denmark will win than it is that one of Argentina or
China will win.

6) It is more likely that one of Argentina, China, or Denmark will win than it is
that one of Brazil or England will win.

To the extent that we find this combination of claims clearly inconsistent, that is
evidence in favor of FP,4, which rules it out as such. That is, if it is judged to be

15 Moreover, WA is equivalent to WP3. Most of what we say in §10 is neutral with regard to totality.
16 Tt is easy to extend this to a total ordering on @(W). See, e.g., Fine 1973: 22.
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part of the meaning of ‘at least as likely as’ or ‘more likely than’ that (3)-(6) are
inconsistent, then this would show that FA and its associated models are not strong
enough to capture what these expressions mean. However, we find it doubtful that
English speakers will have such strong intuitions about examples like this. Moreover,
to repeat, this is the simplest kind of natural language example that could be used to
motivate even the weakest of stronger systems. To motivate Scotts, Scottg, Scotty,
and so on, up to FP.., would require even more complicated examples.

The challenge of motivating FP., is different than the challenge of motivating,
e.g., classical propositional logic. It is also true that there are complicated tautologies
of classical logic that ordinary speakers would not recognize as intuitively valid.
However, those complicated tautologies follow from simpler entailment principles
that are (arguably) intuitively valid. By contrast, Scotts, Scotts, Scotts, and so
on, do not seem to follow from simpler entailment principles (cf. Theorem 4).
Other axioms of qualitative probability (most of which are not statable in .Z’) that
are sufficient to guarantee compatibility with a finitely additive measure have been
discussed (Krantz, Luce, Suppes & Tversky 1971: §5), but we doubt that any of these
conditions provide an easier route to justifying FP., and finitely additive measure
semantics based on intuitions about the ordinary meaning of ‘at least as likely as’.!’

It may be thought that combinations of statements like (3)-(6), while not obvi-
ously inconsistent or reducible to anything obviously inconsistent, are normatively
objectionable upon closer scrutiny.!® After all, such statements are incompatible
with any finitely additive measure, that is, incompatible with the Kolmogorov axioms
for probability. One might attribute speakers’ failure to reject (3)-(6) to processing
limitations, while holding that (3)-(6) should be jointly inconsistent according to the
semantics because their combination violates norms of reasoning.

Our first observation about this proposal is that it goes well beyond the methodol-
ogy described by Chierchia & McConnell-Ginet (2001), since it appeals to arguments
about how one ought to reason, rather than more basic intuitions about, e.g., what
follows from what. Second, and more importantly, it is by no means obvious that
(3)-(6) are in any way objectionable, beyond merely not being compatible with
finitely additive probability. We already mentioned Gaifman (2009), who considers
principle A, but not Scotts or any stronger principle, to be part of the “hard core” for
the logic of uncertain reasoning. Fine (1973: 23), in his seminal treatise on proba-
bility theory, argues that “CP [comparative probability] relations are not reasonably
restricted to only those compatible with additive probability.”

We certainly cannot hope to settle this issue here. Rather, we simply want to

17 This doubt also applies to the conditions listed in Theorem 3.5 of Krantz et al. 1971: 85 and Theorem
4.2 of Narens 2007: 33, which Lassiter (2011: 77) cites in an argument for finitely additive measure
semantics (note especially Def. 3.4 of Krantz et al. 1971: 84 and Def. 4.5 of Narens 2007: 33).

18 On this question, see Icard 2013.
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call attention to the fact that these stronger logical principles, which correspond
to the jump from qualitatively additive to finitely additive measures, seem to be
far-removed from ordinary linguistic entailments and are even controversial from
a mathematical, or normative, point of view. We tentatively conclude that if one
wants to motivate finitely additive measure semantics over, say, qualitatively additive
measure semantics, this cannot be done on the basis of intuitive entailments.

10.2 Analogies: Heights and Times

It may be instructive to consider what semanticists have said about analogous
domains of discourse. Here we will briefly discuss discourse about time and height.
Just as in the case of epistemic modals, we can study the language of time by
interpreting fragments in well-defined model classes. For talk about time this might
include a basic “time scale,” which is sometimes modeled with rational or real
numbers. Already here, the structure of the basic time scale seems underdetermined
by features of English or intuitions about what follows from what. For instance, the
property of so-called Dedekind completeness, satisfied by the real numbers but not
by the rational numbers, is captured by a formula that can be stated in a very simple
language with only basic future (‘it will be the case that’, symbolized by F') and past
(‘it was the case that’, symbolized by P) tense operators (van Benthem 1991): 19

(FHONF=9ANG(=¢ — G—9)) = F((9 AG—9)V (m9 NHQ)).

While it is noteworthy that this property is expressible in such a simple language—
just as finite additivity is expressible in the language . using the Scott schemata—
we are not aware of any claim that this principle and its associated semantic property
are properly part of the semantics of future and past tense.

Some authors have been reluctant to allow even more basic assumptions to figure
into the semantics of temporal language. For instance, on the question of whether
the time scale should be upper or lower bounded, Bach (1986: 579) rhetorically asks,
“Are questions about the Big Bang and the Final Whimper linguistic questions?”
Apparently our linguistic practices do not settle such matters. After all, these are
questions of substantive scientific concern, and a number of linguists have explicitly
denied the dependence of semantics on what science, or even tutored common sense,
tells us about a given domain. For instance, Steedman (2010) writes:

As in any epistemological domain, neither the ontology nor the re-
lations should be confused with the corresponding descriptors that
we use to define the physics and mechanics of the real world. The

19 G is an abbreviation for —F —, meaning ‘it is always going to be the case that’, and H is an abbreviation
for -P—, meaning ‘it has always been the case that’.
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notion of time that is reflected in linguistic categories is only indi-
rectly related to common-sense physics of clock-time and the related
Newtonian representation of it as a dimension comprising an infinite
number of instants corresponding to the real numbers, still less to the
more abstruse representation of time in modern physics. (925)

This is in marked contrast to older views of semantics, according to which a semantic
theory of some fragment just is a scientific theory of that fragment’s subject matter.>"

To relate this back to the semantics of epistemic modals, one could take the stance
that the semantics of our talk about probability and likelihood should be determined
by our best theory of probability and likelihood. Whether finitely additive probability
is the best theory for comparative probability judgments is controversial, as noted.
However, perhaps if one is convinced that it is, this may provide a route to justifying
a strong logic like FP., and finitely additive probability. One might think of this as
a “regimentation” of our ordinary talk and reasoning.?! This would of course not
be an empirical argument for such a strong logic, and in particular it would not be
based on our ordinary semantic intuitions. This stance does seem coherent, but it is
not the one generally taken in semantic theorizing about temporal language.

Some of the same themes come up in work on the semantics of gradable ad-
jectives like ‘tall’. At least since Lewis (1970), who attributes the idea to David
Kaplan, a popular analysis of words like ‘tall’, and their comparative forms like
‘taller than’, is that they are interpreted in terms of scales. Analogous to the literature
on qualitative probability, there is also a literature on qualitative axioms for extensive
measurement (Krantz et al. 1971: §3). On one hand, we could explore a similar
landscape of systems corresponding to stronger and stronger assumptions on scales
for extensive quantities like height. On the other hand, theorists in this area have
typically made as few assumptions as possible about properties of the underlying
scale, thereby committing themselves to minimal logical validities. For instance,
in an early paper on ‘tall’, Cresswell (1976: 266) writes, “It is tempting to think
of > as at least a partial ordering; whether it should be strict or not or total or not
seems unimportant, and perhaps we should even be liberal enough not to insist on
transitivity and antisymmetry.” This is not to mention more substantive assumptions
like additivity. Carrying this view over to comparative likelihood, we would be left
with a logic much weaker than anything we have considered here. Such a view of
semantics—as merely capturing the “logical forms™ of sentences—is perhaps less

20 A classic statement of this view can be found in Bloomfield (1933: 139) chapter on semantics, where
he says, “In order to give a scientifically accurate definition of meaning for every form of a language,
we should have to have a scientifically accurate knowledge of everything in the speaker’s world.”

21 See, e.g., Eriksson & Hdjek (2007: 209), who argue that finitely additive probability “only adds
structure and nuance to a concept. . . that we already had.”
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popular than it once was. But it is one extreme worth mentioning.>?

Even if one takes such an austere picture of what semantics ought to concern
itself with, recent developments have motivated assuming at least some structure
in scales for gradable adjectives. As Rotstein & Winter (2004) and Kennedy &
McNally (2005) have convincingly argued, adjectives can be roughly classified on
the basis of whether they can be combined with certain modifiers. These classes
can be understood in terms of properties of scales. For instance, the scale for a
given adjective is upper bounded just in case it is modifiable by such expressions
as ‘perfectly’ or ‘completely’. While ‘perfectly flat’ and ‘completely flat” make
sense, ‘perfectly tall’ and ‘completely tall’ do not. The scale for height is therefore
assumed to be unbounded from above, as seems pretheoretically reasonable.”

There is a lively current debate about these issues for words such as ‘likely’ and
‘probable’ (Lassiter 2010; Klecha 2012). One question is whether they should be
interpreted in terms of a closed scale. We do not wish to take a stand on this question.
In fact, as far as the language . we have studied in this paper goes, the logic of ‘at
least as likely as’ is neutral on this issue.”* However, it is an interesting question
whether some analogous grammatical considerations could be used to argue for or
against finite additivity. Compatibility with modifiers is not directly about entailment
or validity, but it is nonetheless assumed to be relevant to the semantics of gradable
adjectives. Could there be some such diagnostic relevant to finite additivity?

Summing up, in the domains of height and time, theoreticians have been reluctant
to draw conclusions about semantics either from speakers’ beliefs about the domain
or from what the sciences tell us about the domain. It is an interesting open question
whether there may be grammatical or other purely linguistic sources of evidence
for or against finite additivity, for example, on analogy with scale boundedness.
Absent such independent evidence, the insistence upon more restrictive classes of
models and correspondingly stronger logical systems will have to be motivated by
something other than first-order linguistic intuitions or behavior.

22 Wheeler (1972: 319) expresses an austere view: “Semantics, as we see it, is solely concerned with
finding out what the forms of sentences in English are. When we have found where the predicates
are, semantics is finished. It is certainly a worthwhile project, when semantics is done, to state some
truths using the predicates the semantics has arrived at, but this is to do science, not semantics. . ..
The tendency we oppose is the tendency to turn high-level truths into analytic truths.”

23 Intriguingly, Kennedy (2007) suggests that our pretheoretic intuitions sometimes come apart from
what is implicated in the semantics. One of his examples is ‘(in)expensive’, which we might initially
assume to imply a least degree of expense. However, because ‘barely expensive’ and ‘completely
inexpensive’ seem infelicitous, he argues that the scale ought to be open. Thus, grammatical
considerations are claimed to eclipse pretheoretic intuitions about the domain in question.

24 We assumed a closed scale from 0 to 1 for reasons of convenience and custom.
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11 Conclusion

In this paper, we have considered a number of semantic accounts and associated
logics for the comparative epistemic modal ‘at least as likely as’. We have focused on
semantics that give rise to the logics FA or WA, with models based on qualitatively
additive measures or qualitative event-orderings, and the logics FP., or WPR, with
models based on finitely additive measures or qualitative world-orderings. As we
have seen, there is a large gap to bridge between FA/WA and FP../WP.R. Indeed,
the question of how to motivate going beyond de Finetti’s logic FA to the logic
FP., of finitely additive probability has been difficult to answer even for probability
theorists and philosophers of probability. It would be remarkable if the gap between
FA and FP., could be bridged by considerations from natural language.
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