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Challenge problems for a theory of degree multiplication
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Elizabeth Coppock
Boston University

Abstract This paper offers a theory of degree multiplication in natural language
semantics. Motivation for the development such a theory comes from proportional
readings of quantity words and rate expressions such as miles per hour. After laying
out a set of ‘challenge problems’ that any good theory of degree multiplication should
be able to handle, I set about solving them, borrowing mathematical tools from
quantity calculus. These algebraic foundations are integrated into a compositional
Montagovian framework, yielding a system that can solve, or partially solve, some
of the problems.
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1 Motivation

This paper makes the case that the foundations for degree semantics should furnish
operations of multiplication and division among degrees, and shows how to achieve
that, building on tools from quantity calculus. Let us begin by fleshing out what that
means and seeing how it might be useful.

One motivation for having degree multiplication in the foundations for our theory
of semantics comes from ‘proportional’ readings of quantity words like few and
many (as opposed to ‘cardinal’ readings):

(1) Few egg-laying mammals suckle their young.

There are actually quite a large number of egg-laying mammals that suckle their
young, in terms of raw numbers, but relative to the total number of egg-laying
mammals, the proportion is low; that’s what makes this a ‘proportional reading’
(Partee 1989).

* This work has benefitted from discussions with audience members at the NYU Philosophy of
Language Workshop and the MIT Semantics Triangle, especially Lucas Champollion, Friederike
Moltmann, Maša Močnik, Ying Gong, Hayley Ross, and Kai von Fintel. Thanks also to David
Alvarez (BU undergraduate research assistant, summer 2019) for a first pass on the analysis of per.
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Challenge problems for a theory of degree multiplication

One recent approach to the analysis of these kinds of cases is to involves the idea
that degrees can be proportions (Solt 2009, Bale & Schwarz 2019). And one explicit
manifestation of this idea is in Bale & Schwarz’s lexical entry for much/many:

(2) λdλPλQ .µ(P∩Q)≥ d
where µ has a contextually set value, e.g. one of µweight, µvolume, µlength, µ#,
µ weight

vol-of-P
, µ weight

vol-of-Q
, µ #

#-of-P
, µ #

#-of-Q
, µ #

length-of-rope
, etc.

This lexical entry appeals to an under-specified measure function µ , which can take
on any of several more specific values, including the ones shown in the list they
provide. Some of these µ’s measure objects along a dimension that is expressed
as a fraction. What does it mean to measure something along a dimension that is
expressed as a fraction? Is the value of such a measurement a degree that is itself a
quotient of degrees? A theory of degree multiplication can answer such questions.

Another place where multiplication involving degrees shows up in the existing
literature is in the analysis of percent, which has interesting conservativity-violating
usages that have been the subject of some recent discussion (Ahn 2012; Sauerland
2014; Ahn & Sauerland 2017; Sauerland & Pasternak to appear):1

(3) The company hired 30 percent women.

Sauerland & Pasternak (to appear) analyze percent as follows:

(4) λDdtλnnλD′dt .D
′ ⊆ D∧max(D′)≥ n

100 ×max(D)

This lexical entry appeals to a multiplication operation between a number that is
expressed as a fraction and a degree – the maximum in a given set of degrees.

Taking per out of percent exposes a wider range of cases where the idea of
quotient is intuitively expressed in natural language: parts per million, miles per
hour, dollars per couple, hospitals per capita. And it’s not just per; there there are
other words and constructions that express the same idea: situps a day, cents on the
dollar, and cents for every dollar. Along with division, there are also words and
constructions that express multiplication, such as twice as tall (which presumably
involves multiplication of a number times a degree), cubic centimeters (centimeters
times centimeters), and arguably 3 apples at $2 per apple (which is $6).

There are two previous approaches to the semantics of per that have been offered.
Panaitescu & Tovena (2019) offer an analysis of Romanian de and Italian per inspired
by Rothstein (1995), treating the phenomenon as a kind of distributivity involving
matching between two domains.2 This approach does not make use of the concept of

1 See also Ahn & Sauerland 2015; Li 2018; Solt 2018; Spathas 2019; Pasternak 2019; Coppock under
review, and other contributions to a forthcoming special issue of Glossa on the topic.

2 I learned of this work only after the copy-editing stage, so I must delay a comparison between their
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division, and relies instead solely on familiar quantificational mechanisms. Rawlins
(2013), who uses per to eludicidate the formal semantics of ‘adverbs of space and
time’ like quickly and slowly (Cresswell 1977b), suggests the kind of division-
based approach that I pursue here. As Rawlins (2013) discusses, measure phrases
constructed with per can serve as differential arguments of comparative adverbs, but
only when the modified verb phrase has the right aktionsart. The notion of degree
division appears again in Rawlins’s analysis: Building on Alrenga’s (2007) notion of
dimension as a set of degrees, Rawlins defines the ‘ratio dimension’ of Dimension A
and Dimension B as the set of degrees obtained by dividing a degree in Dimension
A by a degree in Dimension B, “settting aside some issues in properly defining
division” (Rawlins 2013: 184).

Within formal semantics, foundations for degree multiplication have not yet
been laid down. Cresswell (1977a), who provided the first serious foundations for
degree semantics, only provided a comparison operation. Klein (1991) contributed
addition, through concatenation. Sassoon (2010) and van Rooij (2011) explicitly
discuss multiplication within a particular dimension, building on measurement theory
(Krantz, Luce, Suppes & Tversky 1971). Thanks to their work, we can analyze cases
like twice as tall. But if we want to multiply and divide across dimensions, as the
examples with per seem to require, then we will need more foundational changes to
our theory of semantics.

To nurture and guide the development of a theory of degree multiplication, I
hereby propose a set of “challenge problems”.3 These are inferences whose validity
we should be able to capture if we have a good theory of degree multiplication.

(5) Sainetra walked at 5 mph for 3 hours. (Challenge Problem 1)
Therefore, Sainetra walked 15 miles.

(6) Zahra did 30 situps a day for a week. (Challenge Problem 2)
Therefore, Zahra did 210 situps in one week.

(7) Tickets cost $5 per couple. (Challenge Problem 3)
Therefore, tickets for 3 couples costs $15.

To preview where we will end up, kilometers per hour will be analyzed as a
quotient that can be expressed as a fraction:

(8) kilometers per hour km
hour

Here, the numerator is a particular quantity corresponding to kilometer, and the

approach and mine to future work.
3 I am inspired here by the “Recognizing Textual Entailment” challenge in natural language processing

(Dagan, Glickman & Magnini 2006).
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denominator is a particular quantity, the quantity corresponding to hour. This is not
your grandmother’s division. It’s not division among numbers, but rather among
degrees. We can’t take that for granted; we have to spell out what that means.
Luckily, there is an 200-year intellectual tradition devoted to doing exactly that: the
study of quantity calculus.

2 Quantity calculus

Quantity calculus is the mathematical study of quantities. In this context, a ‘quantity’
is defined as “a property of a phenomenon, body or substance, where the property
has a magnitude that can be expressed as a number and a reference” (JCGM 2012).
The ‘reference’ here could be a unit like ‘kilometer’. So the magnitude of a particular
quantity could be, for example, ‘five kilometers’. Examples include the radius (of a
particular circle), and the wavelength of a particular sample of radiation.4

In the literature on quantity calculus, it is generally taken for granted that there
are three operations to characterize:

• product of quantities

• product of a number times a quantity

• addition of quantities of the same kind

So any two quantities can be multiplied together, but addition is more restricted.
The history of this endeavor goes back almost exactly two centuries; see de Boer

1994 for a helpful overview of the intellectual history. Yet the algebraic foundations
for quantity calculus remain a topic of discussion to this day. I will be drawing
on a recent proposal by Raposo (2018, 2019), who distinguishes between two
different approaches to the algebraic foundations for quantity calculus: a unit-centric
approach, where a quantity is defined as a combination of a number and a unit, and
a dimension-centric approach, under which “the dimension is an intrinsic property
of a quantity, in contrast to its numerical value, which depends on the unit chosen,
or the unit itself, which can be changed arbitrarily.” So, for example, the quantity
named by ‘five kilometers’ bears no intrinsic relation to the number five, but it does
bear an intrinsic relation to the dimension ‘length’.

4 JCGM (2012) distinguish between specific 1 quantities like the radius of a particular circle and
general quantities like ‘radius’ in general. The specific quantities could be thought of as similar to
tropes insofar as they inhere in particular objects, but I see them as sharable across objects, so for
example if you and I are the same height then the quantity corresponding to my height would be the
same as the quantity corresponding to your height. So the specific quantities are like trope types. I
will use ‘quantity’ in the specific sense here, and I take it to be synonymous with ‘degree’.
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I will adopt a dimension-centric approach. We will start, therefore, with a set
of basic dimensions, written B. We could, for example, start with the seven basic
dimensions identified in the International System of Units (SI). Each of these has a
designated symbol and a corresponding base unit:

Dimension Base unit
L – length meter (m)
M – mass kilogram (kg)
T – time second (s)
I – electric current ampere (A)
Θ – thermodynamic temperature kelvin (K)
N – amount of substance mole (mol)
J – luminous intensity candela (cd)

Now, a particular quantity could have as its dimension a product of basic dimen-
sions. For example, if h is Plank’s constant,5 then the dimension of h is mass times
length squared, divided by time:

dim(h) = M ·L2 ·T−1

The basic dimensions can be multiplied together to get derived dimensions. They
can also be multiplied by themselves – length times length, for example.

The set of dimensions D forms a group under product, which means:

• if A,B ∈D , then A ·B ∈D

• D has an identity element 1D , such that for every D∈D : D ·1D = 1D ·D = D

• There is an inverse D−1 for every D ∈D :
an element such that D ·D−1 = 1D

These are the properties that define a group: closure under product, the existence
of a multiplicative identity element, and the existence of multiplicative inverses for
each member of the set.

There do exist quantities that have as their dimension this multiplicative identity
element 1D . These are sometimes called ‘dimensionless quantities’, although the
term is a bit of a misnomer. Examples include ratios of two quantities of the same
kind. ‘Relative permeability’ is an example from physics; ‘dollars earned per dollars
saved’ is a more accessible example, with dollars as the unit on both the numerator
and the denominator. Numbers of entities, like number of molecules in a given
sample, are also considered ‘dimensionless’. We will come back to this fact.

A dimension can be raised to any integer power. For a given dimension D,

5 Apparently the Planck constant multiplied by a photon’s frequency is equal to a photon’s energy.
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D0 = 1D

D1 = D D−1: multiplicative inverse of D
D2 = D ·D D−2 = (D−1)2

D3 = D ·D2 D−3 = (D−1)3

...and so on: Dk = D ·Dk−1 ...and so on: D−k = (D−1)k

Now, each dimension in D has a unique expression as the product of basic dimen-
sions raised to integer powers. Thus, if our set of basic dimensions B is the set of
basic SI dimensions, then each dimension in D can be written as follows:

D = Ln1 ·Mn2 ·Tn3 · In4 ·Θn5 ·Nn6 · Jn7

where n1, ...,n7 are integers.
Now let us bring quantities into the picture. The set of quantities is written Q,

and each quantity q ∈Q is mapped by a function dim to its unique dimension.

Q D
dim

For example, quantities of mass will be mapped by dim to the dimension mass:
If 3kg names a particular mass, then dim(3kg) = M. The inverse of the dimension
mapping, written dim−1, identifies all of the quantities sharing a given dimension.
Thus, dim−1(M) denotes the set of quantities of mass. Rather than dim−1(D) I will
write QD to denote the set of quantities with dimension D. Note that, as a conse-
quence, Alrenga’s (2007) conception of dimensions as sets of degrees/quantities can
straightforwardly be reconstrcted because dimensions (which are primitives here)
determine a set of quantities.

On Raposo’s (2019) system, the space of quantities is organized as a fiber bundle.
Each dimension corresponds to a fiber within the bundle. Within a fiber it is possible
to add and multiply but across fibers it is only possible to multiply. Each one of
these fibers is a vector space over the real numbers: For all dimensions D, the set
of quantities with dimension D, written QD, is a vector space over the real numbers
(written R), so:

• There exists a zero element 0D ∈QD such that for any q ∈QD:

q+0D = q

• For any q ∈QD, there is an additive inverse element −q ∈QD such that:

q+(−q) = 0D
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• There is a multiplicative identity element 1 from R s.t. for any q ∈QD:

q∗1 = 1∗q = q

Note that the zero element 0D, which can also be called an ‘additive identity element’,
is specific to the dimension; there is one zero element per dimension. Note also that
the multiplicative identity is just the real number 1.

Since for all dimensions D, QD is a vector space over R, it follows that for any
q, q1, q2, q3 ∈Q and scalars α,α1,α2 ∈ R:

• q1 +q2 ∈QD (closure under addition)

• α ∗q ∈QD (closure under scalar multiplication)

• q1 +q2 = q2 +q1 (commutativity of +)

• q1 +(q2 +q3) = (q1 +q2)+q3 (associativity of +)

• α1 ∗ (α2 ∗q) = (α1×α2)∗q (compatibility of ∗ and ×)

• α ∗ (q1 +q2) = α ∗q1 +α ∗q2 (distributivity 1)

• (α1 +α2)∗q = α1 ∗q+α2 ∗q (distributivity 2)

Basically: addition and multiplication are well-behaved. One thing to note here
is that real number multiplication is distinguished in the notation from the kind of
multiplication that involves quantities (× vs. ∗, respectively; cf. also ·).

Now that we have the fibers in place, the next step is to bundle them together
using the product operation. Because not every quantity has a multiplicative inverse,
the space of quantities does not form a group under the product operation; 〈Q,∗〉 is,
rather, an abelian monoid (called ‘abelian’ because * is commutative):

• If q1,q2 ∈Q, then q1 ∗q2 ∈Q

• There is a multiplicative identity element 1 such that for all q ∈Q:

q∗1 = 1∗q = q

• If q1,q2,q3 ∈Q then q1 ∗ (q2 ∗q3) = (q1 ∗q2)∗q3 (associativity)

• q1 ∗q2 = q2 ∗q1 (commutativity)

The most important part is the fact that the set of quantities is closed under product;
this is what binds the fibers together into a bundle.
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Again, not every quantity has an inverse. In particular, none of the zeros 0D (for
D ∈D) has a multiplicative inverse. In other words, you can’t divide by (any of the)
zero(es). But for every non-zero quantity q ∈Q, there is an inverse q−1:

q∗q−1 = 1

In other words, the set of non-zero quantities forms a group under multiplication.
This comes in handy, because it gives us confidence that we can divide by a given
quantity as long as we know that it is not a zero.

Recall that there is a mapping from the set of quantities to the set of dimensions
called dim. There is also a mapping in the other direction called unit. For each
dimension, there is a designated quantity in Q that serves as the unit quantity for
that dimension. There are restrictions on the unit mapping: A unit quantity cannot
be a zero, and unit must be a group homomorphism:

unit(A ·B) = unit(A)∗unit(B)

Gloss: “The unit of a product of dimensions is the product of units of the dimensions.”
Because a unit is non-zero quantity, we can divide by any unit (or any product of a
unit with a non-zero scalar).

This concludes the presentation of Raposo’s system. Now we have the tools
necessary to represent kilometers per hour. If kilometer is the unit of length and hour
is a non-zero number times the unit of time (e.g. hour = 60∗ second), then we can
represent kilometers per hour as kilometer times the multiplicative inverse of hour:

km∗hour−1

We know that hour has a multiplicative inverse because it is a non-zero quantity.

3 Representation language

We are finally ready to start doing semantics. Let us now import the mathematical
foundations we established in the previous section into a Montagovian framework.
I define a formal representation language LQ, which is a λ -categorial language,
complete with lambda operators and universal and existential quantifiers, one that
also has quantity calculus built into it. An expression in LQ is assigned a denotation
relative to a model that incorporates the operations over degrees and dimensions that
we have been discussing. More specifically, the semantic value of an expression φ

in LQ is given by JφKM, where:

M = 〈A ,V ,〈DB, ·〉,〈Q,∗,+〉,unit,dim, I〉
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Here A is a set of individuals and V a set of events. As usual, I maps each
constant of type τ to an element of Dτ ; this is familiar from traditional Montagovian
frameworks. The other components are as described above:

• 〈DB, ·〉 is an abelian group with basis B, a finite set of dimensions

• dim is a surjection map from Q onto DB

• Each dim−1(D) = QD yields a one-dimensional vector space over R

• 〈Q,∗〉 is an abelian monoid

• unit is a group homomorphism from DB to Q

Each expression in LQ has a type, and a denotation in the corresponding domain; if
α has type τ then I(α) ∈ Dτ . Most of the types are familiar. For type t: Dt = {0,1}.
For type e: De = A . For type v: Dv = V . For type n: Dn = R. The only slight
difference is that expressions of type d (for ‘degree’) are interpreted as members of
the set of quantities: Dd = Q. Complex types are defined as usual: If σ and τ are
types, then 〈σ ,τ〉 is a type, the type of functions from Dσ to Dτ .

To complete the specification of the representation language, we must import the
multiplication and addition operations into it from the meta-language:

• Jα +β KM = JαKM + Jβ KM

• Jα ·β KM = JαKM · Jβ KM

• Jα ∗β KM = JαKM ∗ Jβ KM

• JαnKM = (JαKM)n

We will also make use of the following abbreviation, use fractions to signify division:

α ∗β
−1 ≡ α

β

Multiplying by the multiplicative inverse is the same as dividing.
Here are denotations for some constants of type d in the representation language:

JmKM = m = unit(L). JkmKM = 1000 ∗m. JsKM = s = unit(T). JminuteKM = 60 ∗ s.
JhourKM = 60∗60∗ s. Again, constants of type d are interpreted as quantities.

Expressions of English will be translated to LQ by a function . For example,
the word meter will be translated as m. Crucially, we can now give a lexical entry
for per:

(9) per λdλq .q∗d−1
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A

QD

R
µD ◦ v

µD v : v(q) = q
unit(dim(q))

Figure 1 The Lønning Triangle

On this treatment, per takes two degrees (d for ‘degree’ or ‘denominator’ and q for
‘quantity’), and gives back q times the multiplicative inverse of d, or q

d .
Now, using the composition rule of Function Application (Heim & Kratzer 1998)

we can compositionally derive an appropriate meaning for kilometers per hour as
follows:

(10) km∗hour−1 ≡ km
hour

km
kilometers

λq .q∗hour−1

λdλq .q∗d−1

per
hour
hour

We have our first compositional analysis of a fractional quantity!
To solve the challenge problems, we will need to link individuals and events

to quantities. I will adopt a version of what might be called the Lønning Triangle
(Lonning 1987), shown in Figure 1. It breaks up the relation between individuals
and numbers into two steps: assigning an individual a quantity, and mapping from
quantities to numbers. On Champollion’s (2017) theory, unit terms like kilo denote
the latter kinds of functions, from quantities to numbers. The proposal here is similar,
insofar as the denotation of unit terms will be interdefinable with such functions.

On the left edge of the triangle, I assume that, for every dimension D, there is a
function µD (as a first pass).6 For the right edge of the triangle, it would be possible
to define a function from quantities to numbers. This would be a valuation function v
which assigns to a quantity q the quotient of q and the unit for dim(q). For example,

6 A measure function µD could be viewed in a number of ways. If quantities are viewed as kinds
(Anderson & Morzycki 2015; Scontras 2017), then it could be an instantiation relation; if quantities
are viewed in terms of tropes (Moltmann 2009), µD(x) could be seen as mapping x to a particular
trope type that x bears an instance of. Both of these are consistent with the proposal here.
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supposing that km is the unit of length:

v(3km) =
3km

unit(dim(3km))
=

3km

unit(L)
=

3km

km
= 3

I happen to be treating units as particular quantities, but we can easily go back and
forth between these two ways of viewing the semantics of unit terms.

Notice that we already have a handle on the notation from Bale & Schwarz
(2019) where fractions occur in the subscript of the µ functions:

µ weight
vol-of-P

, µ weight
vol-of-Q

, µ #
#-of-P

, µ #
#-of-Q

, µ #
length-of-rope

We might not have everything in this list, but we have some meat to put on the bones
of these kinds of representations. For example, µ L

T
has a clear meaning.

4 Challenge Problems

We are now ready to approach the challenge problems. Let us begin with the first
one, the most straightforward one:

(11) Sainetra walked at 5 km per hour for 3 hours.
Therefore, Sainetra walked 15 km.

To solve this problem, we need a principle like ‘speed times time equals distance’.

(12) speed(e)∗ τ(e) = σ(e)

Here, τ signifies the temporal trace function and σ the spatial extent function (Krifka
1989; Champollion 2017). But let us write things a bit differently: µT instead of
τ; µL instead of σ ; and µ L

T
instead of speed. Now the ‘speed times time equals

distance’ principle can be derived from a deeper principle, one I am calling the
µ-product postulate (since it is a meaning postulate, in Montague’s sense).

(13) µ-product postulate
µA(x)∗µB(x) = µA·B(x)

Dividing both sides by B, we obtain the following corollary:

(14) µ A
B
(x)∗µB(x) = µA(x)

In particular:

(15) µ L
T
(x)∗µT(x) = µL(x)
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λe .walk(e)∧µ L
T
(e) = 5∗ km

hour

λe .walk(e)
walk

λe .µ L
T
(e) = 5∗ km

hour

λqλe .µ L
T
(e) = q

at
5∗ km

hour

5
five

km∗hour−1 ≡ km
hour

km
km

λq .q∗hour−1

λdλq .q∗d−1

per
hour
hour

Figure 2 Derivation for walk at five km per hour.

In other words: speed times time equals distance.
We will also need a compositional analysis of walk at 5 km per hour. We already

have a compositional analysis of km per hour. To combine it with five, I propose
we use a composition rule that introduces multiplication (following loosely in the
footsteps of Ionin & Matushansky 2006). Let us assume at introduces a speed
modifier of an event, yielding a property of an event (cf. the analysis of adverbs like
quickly by Tenny 2000; Ernst 2004: i.a.). Walk also denotes a property of an event.
These two properties combine via predicate modification, yielding a property that
holds of a walking event whose speed is 5 km per hour.

Making the simplifying assumption that for three hours does nothing more than
specify the duration of an event (and ignoring the fact that it contributes distributivity;
cf. Champollion 2015), the VP in the premise of (11) denotes the following:

(16) walk at 5 km per hour for three hours
 λe .Walk(e)∧µ L

T
(e) = 5∗ km

hour ∧µT(e) = 3∗hour

By the µ-product postulate, any event that satisfies this description also satisfies the
denotation of walk 15 km.

(17) walk 15 km λe .Walk(e)∧µL(e) = 15∗ km

Since the VP in the premise is a subset of the VP in the conclusion, and the two
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sentences have the same subjects and tense/aspect features, the premise entails the
conclusion. Challenge problem solved!

Let us now move on to the second challenge problem, repeated just below, which
will raise some interesting issues.

(18) Zahra did 30 situps a day for a week.
Therefore, Zahra did 210 situps in one week.

Rather than a unit of measurement along a physical dimension, the numerator names
a category of events: situps. One approach to this type of case would be to assume
that for every property P, there is a different dimension #P. For example, if x is a
collection of three bears, then you could say that x measures three times the unit for
the ‘number of bears’ dimension, along that dimension. (The resulting µ function
would be much like Krifka’s (1995) ‘object unit’ function.)

(19) µ#bear(x) = 3∗unit(#bear) ‘x is three bears’

Similarly, an event of 30 situps might be said to measure 30 times the unit for the
‘number of situps’ dimension, along that dimension:

(20) µ#situp(e) = 30∗unit(#situp) ‘e is 30 situps’

Let us adopt this assumption for now; we’ll consider another alternative later.
Now for day. If we take it to mean ‘mean solar day’ then we can define it as a

number of seconds:7

(21) day≡ 24∗ (60∗ (60∗ s))

With these assumptions in place, we can treat 30 situps a day as 30 times the
unit for the ‘number of situps’ dimension, divided by day:

(22) 30 situps a day 30∗ unit(#situps)
day

The verb do seems to function as a light verb here, so we can treat do 30 situps a
day as a property of events that measures that rate of situps per day.

(23) do 30 situps a day λe .µ #situps
T

(e) = 30∗ unit(#situps)
day

Adding for a week (again simplifying a bit, and treating it as a 7-day duration) yields:

7 A solar day is the time it takes for the sun to return to the same point in the sky; a sidereal day is the
time it takes for the earth to return to the same point relative to the stars. Solar days vary in length
throughout the year, but the average (mean) is 24 hours, whereas sidereal days are about four minutes
shorter. It is also worth noting that we are treating ‘day’ as a quantity, or duration, rather than an
object; see both Fillmore 1997 and Champollion 2016a,b for discussion of this distinction.
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(24) do 30 situps a day for a week
 λe .µ #situps

T
(e) = 30∗ unit(#situps)

day ∧µT(e) = 7∗day

The µ-product postulate, instantiated with the dimensions in question is as follows:

(25) µ #situps
T

(x)∗µT(x) = µ#situps(x)

Given this, any event that satisfies the description in (24) also satisfies the description
do 210 setups in a week, assuming that in a week just specifies a 7-day duration:

(26) do 210 situps in one week
 λe .µ#situps(e) = 210∗unit(#situps)∧µT(e) = 7∗day

Solved! Assuming that we can make that assumption that for every property P
there’s a corresponding dimension ‘number of P’...

Let us briefly consider Challenge Problem 3 before returning to that assumption.

(27) Tickets cost $5 per couple.
Therefore, tickets for 3 couples costs $15.

In this case, the denominator seems to name a unit on a ‘number of entities’ di-
mension. Supposing we represent the denominator as unit(#couple), and introduce a
dimension for money in dollars called $$ whose unit is $, then the meaning of $5
per couple could be represented as:

(28) 5∗$
unit(#couple)

Then the premise and the conclusion, respectively, can be represented as follows
(simplifying the generic to a universal, and finessing the plural on tickets):

(29) Tickets cost $5 per couple.
 ∀x[tickets(x)→ µ $$

#couple
(x) = 5∗$

unit(#couple) ]

(30) Tickets for 3 couples cost $15.
 ∀x[[tickets(x)∧µ#couple(x) = 3∗unit(#couple)]→ µ$$(x) = 15∗$]

The conclusion follows from the premise given the µ-product postulate. But notice
that there is something a bit strange about this treament. Tickets for three couples
in the conclusion is treated as ‘tickets with a value of 3 on the #couple dimension’.
How is it possible to measure tickets on the #couple dimension? If the measure of x
along that dimension is the number of couples comprising x, then a bunch of tickets
should not be able to measure three on this dimension; it should measure zero if its
measure along this dimension is even defined. All this is to make it evident that the
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dimension in question is not the number of couples comprising x; it’s the number of
couples that x is for, or the number of couples possessing x.

Suppose we introduce the following shorthand:

(31) µ#couplePoss
(x) = 3∗unit(#couplePoss)≡ |y : couple(y)∧Poss(y,x)|= 3

Then we can revise the representation of the premise and the conclusion as follows:

(32) Tickets cost $5 per couple.
 ∀x[tickets(x)→ µ $$

#couplePoss

(x) = 5∗$
unit(#couple) ]

(33) Tickets for 3 couples cost $15.
 ∀x[[tickets(x)∧µ#couplePoss(x) = 3∗unit(#couplePoss)]→ µ$$(x) = 15∗$]

The conclusion still follows from the premise, but we have fixed up the dimension
denoted by couple so that it can be applied to a collection of tickets. What we have
learned from this exercise is that if for every P, there is another dimension ‘number
of P’, representing the number of instances of P that the individual in question
comprises, then there must also be ‘number of PR’ dimensions, where R can be the
relation of possession; who knows what other relations can instantiate this variable.

Let us take a step back. So far, we have been pursuing the option that for every
P, there is a dimension ‘number of P’. That worked for situps a day, but now B is
infinite; we now have an infinite basis for the space of dimensions, whereas we had
originally assumed it was finite. New foundations will have to be laid if we pursue
this route, and work will have to be done to specify what is in the set of dimensions.
Challenge Problem 3 has shown that it is more than just the set of properties (already
an infinite set) that must be included; properties indexed by relations must be too.

Another option is to suppose that there is only one count dimension. This has a
precedent in quantity calculus; remember, in this tradition, it is said that all numbers
of things are ‘dimensionless’ quantities. This keeps B finite. But then the question
becomes how to distinguish tickets per couple vs. tickets per person. So there is
work to do on both horns of this dilemma.

5 Conclusion

I hope to have convinced the reader that it is useful to appeal to a notion of quo-
tient among quantities across different dimensions, that it is not something that is
provided for under current foundations for degree semantics, and that we can get
it by importing a system of quantity calculus. I’ve illustrated how to do this, using
the dimension-centric approach of Raposo (2018, 2019). At the minimum, we got a
lexical entry for per out of it. But I am optimistic that much more can be built on
these foundations.
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