
Proceedings of SALT 31: 530–549, 2021

Zero, null individuals, and nominal semantics in Cantonese*

Hary Chow
University of British Columbia

Marcin Morzycki
University of British Columbia

Abstract It has been convincingly argued that English zero provides evidence
for introducing null individuals into the ontology of natural language (Bylinina
& Nouwen 2018). We examine ‘zero’ in Cantonese, where it provides evidence
that such null individuals are a matter of crosslinguistic variation. Cantonese zero
has a more restricted distribution. It occurs widely in a number of contexts, but
it is systematically ruled out with (normal) classifiers. These facts, coupled with
assumptions about the nature of measurement and nominal semantics, demonstrate
despite its extensive use in the language, zero is impossible in precisely the uses that
require null individuals. Cantonese seems to be telling us that such null individuals
are simply absent from its ontology, implying an interesting difference in natural
language metaphysics between the languages—and perhaps a different perspective
on what theoretical shape crosslinguistic variation can take.
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1 Introduction

There is appears to be a close connection between zero and other numerals in English.
They certainly seem to appear in similar syntactic contexts (modulo some interesting
exceptions; Chen 2018):

(1) a. Three dogs barked.
b. Zero dogs barked.

Whatever the syntactic connections, however, it would seem that their semantics
cannot be similarly parallel. A standard denotation for (1a) would require that there
be a plural individual made up of dogs that barked whose cardinality is 3, as in (2a):

(2) a. ∃x[dogs(x)∧barked(x)∧|x|= 3]
b. ∃x[dogs(x)∧barked(x)∧|x|= 0] (for illustration only)

* Thanks to Adam Gobeski, Anne-Michelle Tessier, Friederike Moltmann, Lelia Glass, Lisa Cheng,
Liz Coppock, Marcin Wągiel, Nick Fleisher, Rint Sybesma, Rose Underhill, Roumyana Pancheva,
other SALT attendees, and our UBC colleagues. Thanks also to Isaac Sarver for indispensable earlier
discussion of zero across languages.
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Zero, null individuals, and nominal semantics

But taking the same path for zero, as in (2b), yields an odd result: a denotation
that would require that there be such a plural individual that has no members. But
this is odd in two ways. First, it requires that there be plural individuals composed
of no members, contrary to standard conceptions of plural individuals like that of
Link (1983). This certainly something one might imagine in principle, and some
have (Champollion & Krifka 2015, Nouwen 2015), but it is metaphysically spooky,
an ‘ontological oddity’ in Bylinina & Nouwen’s own words. Second, even if we
were to assume that such individuals exist, the result would be completely unin-
formative. If exactly four dogs barked, it will necessarily also be possible to find
a three-membered plurality of dogs that barked (and a two-membered one and so
on). And for similar reasons, if we allow zero-membered pluralities, it will also be
possible to find a zero-membered plurality of dogs that barked. Put another way, this
approach yields an ‘at least’ reading for numerals, and it will always be the case that
at least zero dogs barked, irrespective of how many dogs barked. This would seem
to point toward an approach that treats zero as a negative quantifier instead.

Nevertheless, the grammatical parallel is so close it leads Bylinina & Nouwen
to pursue a numeral analysis like (2b) even in the face of these facts, and they
argue convincingly that such an analysis—suitably elaborated—is actually the more
enlightening one. It rests on an important assumption that will be our starting point.
We will call it the Null Individual Hypothesis:

(3) THE NULL INDIVIDUAL HYPOTHESIS

The ontology of natural language includes plural individuals with no
members.

If this hypothesis is true, it is a fact about the structure of the model underlying the
semantics, a fact about natural language metaphysics. It’s not typical to suppose
that the model underlying the semantics varies from one language to another in this
way. This is partly convention. It’s also partly because of the tradition inherited
from philosophy that the model is the actual world and not merely a cognitive
representation of it. And it’s partly because—whatever our assumptions—the world
in which all speakers live is approximately the same. So if the Null Individual
Hypothesis is true for English, it should be true across languages, and we should be
able to find evidence for it everywhere.

Our aim here will be to hunt for evidence of null individuals in Cantonese. What
we find is that there is indeed extensive use of ‘zero’, largely in ways consistent
with the numeral-based approach Bylinina & Nouwen establish for English. But
crucially, despite this, there is no evidence for null individuals in Cantonese. This
result is striking because it suggests a parametric difference between the languages
that really is at the level of the model: the Null Individual Hypothesis is true for
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English but false for Cantonese, making it a Null Individual Parameter.
To make the case, we lay out the distribution of ‘zero’ in Cantonese in section

2, demonstrating that it is a robustly productive part of the language and very
much conceptually available, as much as any ordinary numeral, though it is not
indistinguishable from ordinary numerals in its distribution. In section 3, we lay
the groundwork by sketching the Bylinina & Nouwen approach in more detail. In
section 4, we present the principal part of our analysis, a treatment of classifiers
and of what we’ll call UNIT NOUNS. We offer some notes on the analysis of what
we’ll call CHANCE NOUNS in section 5. Section 6 concludes by returning to the Null
Individual Hypothesis, reflecting what it might reveal about how languages vary.

2 Cantonese zero: the data

The temptation to regard ‘zero’ as a negative quantifier is great, so we’ll first offer
one piece of evidence for this. Of course, ultimately, the choice has to be made by
articulating both approaches and selecting the more explanatory and economical,
which can only be done by considering the full range of data as a whole.

First, an English fact. One of Bylinina & Nouwen’s most consequential empirical
observations is that English zero is not a negative quantifier. That’s apparent in part
because it doesn’t license negative polarity items such as any or at all (but see Chen
2018 for important possible counterevidence):

(4)
{

No
*Zero

}
students bought any car at all.

The ‘zero’ of Cantonese, ling4, likewise fails to license them:

(5) #ling4
zero

gei1 wui2
chance

gaa1
add

jam6 ho4
any

sik1
interest rate

‘zero chance lift any interest rate’

So as in English, there is reason in Cantonese to explore another analytical direction.
To discern the relationship between ‘zero’ and ordinary numerals, it will be

necessary to register how ordinary numerals work. As is widely known, numerals
in Cantonese generally require a classifier (a vast literature attests to this, but some
landmarks include Chierchia 1998 and Cheng & Sybesma 1999):

(6) a. leong5
two

go3
CL.unit

pang4 jau5
friend

‘two friends’
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b. jat1
one

zek3
CL.livestock

gau2
dog

‘one dog’

Here we encounter the first wrinkle. Cantonese ‘zero’ is odd with classifiers:

(7) a. #ling4
zero

go3
CL.unit

pang4 jau5
friend

‘zero friends’

b. #ling4
zero

zek3
CL.livestock

gau2
dog

‘zero dogs’

So does that suggest that ‘zero’ is not numeral-like in Cantonese after all?
To provide an answer, it will be necessary to introduce an important distinction

in the grammar of Cantonese nominals. For CONCRETE NOUNS like ‘friends’ and
‘dogs’ in (7), a classifier is indeed necessary to introduce a numeral. But there is
another class of expressions, which we’ll call UNIT NOUNS, which include words
for ‘calories’, ‘age’, ‘grade points’, and the like. These are the rough counterparts
in Cantonese of English unit or measure terms like inch or pound. Our proposed
term ‘unit noun’ is not ideal, because the analysis we’ll pursue assimilates them to
classifiers rather than to (ordinary) nouns—and of course, not coincidentally, the
counterparts in Cantonese of measure terms are also classifiers.

With unit nouns, the facts are reversed. For concrete nouns, a numeral can only
be introduced in the presence of a classifier. For unit nouns, a numeral can only be
introduced in the absence of one:

(8) a. sap6
ten

ng5
five

fan1
grade

‘fifteen grade points’

b. ji6
two

sap6
ten

kaa1 lou6 leoi5
calories

‘twenty calories’

c. saam1
three

seoi3
age

‘three years old’

Introducing a classifier into (8a), for example, results in ungrammaticality:
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(9) #sap6
ten

ng5
five

go3
CL.unit

fan1
grade

‘fifteen grade points’

So ordinary numerals and unit nouns seem to be in complementary distribution.
But surprisingly, with unit nouns ‘zero’ is possible:

(10) a. ling4
zero

fan1
grade

‘zero grade points’

b. ling4
zero

kaa1 lou6 leoi5
calories

‘zero calories’

c. ling4
zero

seoi3
age

‘zero years old’

The interpretation here is numeral-like rather than like a negative quantifier. To say
that a student received a grade of 0 is not to say that a student received no grade.
We’ll return to this point in section 4.

There is a third class of nouns that we will need to distinguish. We’ll call these
CHANCE NOUNS, because ‘chance’ is a clear exemplar of this class. Others include
‘probability’, ‘trust’, and ‘confidence’. Like concrete nouns, these nouns require a
classifier to combine with ordinary numerals:

(11) a. leong5
two

ci3
CL.instance

gei1 wui2
chance

‘two chances’

b. #leong5
two

gei1 wui2
chance

‘two chances’

It’s worth highlighting, though, that the readings that arise with a non-zero numeral
are often not quite the same as the ones that occur with zero, and some nouns—such
as seon3 jam6 ‘trust’—are simply impossible with numerals greater than or equal
to 1. With ‘zero’, the picture is again reversed. Chance nouns allow ‘zero’ in the
absence of a classifier:

(12) a. ling4
zero

gei1 wui2
chance

‘zero chance’
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b. ling4
zero

seon3 jam6
trust

‘zero trust’

Indeed, chance nouns prohibit classifiers with ‘zero’:

(13) a. #ling4
zero

ci3
CL.instance

gei1 wui2
chance

‘zero chance’
b. #ling4

zero
go3
CL.unit

seon3 jam6
trust

‘zero trust’

As an aside, it’s not just ‘zero’ that has this distribution. Proportional numerals like
percentages and fraction terms like ‘one-third’ are also possible with chance nouns—
again, only in the absence of a classifier. That’s one reason to suspect that that this
distinction is not about negative quantifiers versus numerals, but rather between
varieties of numerals (for much more on distinctions of this sort, see Gobeski &
Morzycki to appear). Another reason is that again, to say that something has a
likelihood of zero is not to say that it doesn’t have any likelihood at all.

English is like Cantonese in the behavior of its chance nouns. As Chen (2018)
observed, confidence can occur with zero in English and not other numerals:

(14) Floyd has


zero

#one
#two




confidence in himself
tolerance of rain
interest in physics
sense of fashion

.

Chen also notes that in contexts like these, zero often has an emphatic flavor. That’s
also true in Cantonese, though we will not attempt a distinct analysis of this fact. It
seems likely that it’s a Gricean effect, arising from having chosen the mathematically-
flavored zero over the more typical no. Where appropriate conceptual measures
are in principle available, English is also like Cantonese in permitting proportional
numerals with chance nouns:

(15) Floyd has a


zero
50%

#two


{

chance
probability

}
of winning the game.

For this reason, our suggestions in section 5 about how chance nouns work in
Cantonese could reasonably be extended to English as well.

In a nutshell, then, the facts are these:
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(16) a. With concrete nouns, ordinary numerals require a classifier and zero is
impossible.

b. With unit nouns, ordinary numerals and zero both prohibit a classifier.
c. With chance nouns, ordinary numerals require a classifier and zero

prohibits one.

3 Laying the groundwork: Bylinina & Nouwen on ‘zero’

The foundation on which we’ll be building is Bylinina & Nouwen, so it will be
necessary to briefly summarize their approach to English zero.

First, they adopt one standard conception of numerals that treats them as measure
phrases occupying the specifier position of an unpronounced adjective MANY (Bres-
nan 1973, Hackl 2000, Solt 2009). Assuming that this adjective denotes a relation
between a degree and an individual (type 〈d,et〉), the numeral itself can directly
denote a degree:

(17) Five students passed.

a. NP
〈e, t〉

AP
〈e, t〉

NP
d

five

A′

〈d,et〉

MANY

NP
〈e, t〉

students

b. J MANY K = λdλx[|x|= d]

c. JfiveK = 5

d. Jfive MANY K = λx[|x|= 5]

This yields a property denotation for five MANY, which can combine intersectively
with the NP denotation, which is a property of pluralities of students.

This requires a nontrivial move in the NP as well. On its own, student denotes
a property of atomic (i.e., single) students, not pluralities of them. So the plural
morpheme has to be interpreted as moving from one to the other. Link (1983)
represents this pluralizing operation with an operator *, which applies to a property
of atomic individuals and yields a property that holds of a plural individual iff every
individual part of that plural individual is one that satisfies the original property.
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Bylinina & Nouwen represent Link’s pluralization operator as in (18), where tX
represents the result of joining every member of the set X together to assemble a
plural individual (in (18) this is also formulated as a set rather than a function):

(18) *Z def
= {tX : X ⊆ Z∧X 6=∅}

Thus *Z is a set consisting of all individuals that can be formed by joining together
(with the generalized join operator t) the members of Z’s non-empty subsets. So
student holds of any individual that’s a student, and *student holds of any non-
empty plural individual made up only of students.

Returning to the computation, then, (17) will involve pluralizing student in
this way, as in (19b), intersecting the result with Jfive MANY K to yield (19c), and
ultimately interpreting the result as the first argument of an implicit existential
quantificational determiner to yield the sentence denotation in (19d):

(19) a. JstudentK = student
b. JstudentsK = *student
c. Jfive MANY studentsK = λx[|x|= 5∧ *students(x)]
d. J∃ five MANY students passedK

= 1 iff ∃x[|x|= 5∧ *students(x)∧ *passed(x)]

The next challenge is to extend this to zero.
For the most part, the story of zero can be perfectly identical, differing only in

requiring a cardinality of 0 rather than of 5, except for one additional difference: as
defined above, the Link-style denotation for * rules out zero-membered pluralities,
and so pluralizing student in this way would not include zero-membered student
pluralities and the sentence would be necessarily false, irrespective of the facts.
Here, Bylinina & Nouwen introduce a crucial distinction. Instead of using Link’s
original *, whose definition they present as (20a) (this repeats (18)), they propose
using instead a new pluralization operator ×, which they define as in (20b):

(20) a. *Z def
= {tX : X ⊆ Z∧X 6=∅}

b. ×Z def
= {tX : X ⊆ Z}

These differ only in whether the definition stipulates that the extension of the
pluralized predicate excludes plural individuals assembled from the null set. This
means that *student will exclude zero-membered pluralities from its extension, but
×students will not.

Compositionally, everything apart from the pluralization operator is as before:
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(21) Zero students passed.
a. ∃ [ zero MANY ] students passed
b. JzeroK = 0

c. J∃ [ zero MANY ] students passedK
= 1 iff ∃x[|x|= 0∧ ×student(x)∧ ×passed(x)]

Their ingenious move is just to introduce a slight change in what the pluralization
operator means—indeed, apparently to simplify it, eliminating the superficially odd
extrinsic stipulation that the null set has no corresponding plural individual. (We
return to the question of relative naturalness in the following section.)

There is an element of the story that’s missing, and it is an important one—though
it is also one for which we will have no need in this paper. This additional element
is a theory of how we avoid the problem of a semantics that is so truth-conditionally
weak as to be trivial. Again, the issue is that denotations like those pursued in this
section give numerals an ‘at least’ interpretation rather than an ‘exactly’ one, even
when an = is used, because any context in which there is a five-student plurality that
passed is also necessarily one in which there is a four-student plurality that did so,
even if only a four-student subplurality of the five-student one. But assigning zero an
‘at least’ reading renders a sentence trivially true. If no students passed, it’s true that
there is a zero-student plurality that passed, and likewise too if five students passed.

The approach Bylinina & Nouwen take is to suppose that, in order to avoid a
semantics that is unusably weak, an unpronounced exhaustivity operator (Chierchia
2004) negates all truth-conditionally stronger alternatives. If we think of any zero
sentence as having in its alternative set meanings that involve every number other
than zero as well, the exhaustivity operator would contribute the additional inference
that any alternative truth-conditionally stronger than the meaning of the original
sentence is false. Because the meaning ‘five students passed’ is stronger than ‘zero
students passed’, the exhaustivity operator will negate it. Indeed, because it will
negate every alternative in which the cardinality of the student plurality that passed
is greater than zero, the result of using this exhaustivity can be represented as in (22):

(22) J EXH Zero student passedK
= 1 iff ∃x[|x|= 0∧ ×student(x)∧ ×passed-the-test(x)] ∧

¬∃y[|y|> 0∧ ×student(y)∧ ×passed-the-test(y)]

This correctly leads to an ‘exactly zero’ reading. Exhaustivity operators are used
in many different semantic contexts, so it isn’t especially shocking that they should
have a crucial role here. It’s interesting, therefore, that Haida & Trinh (2020) found
experimental evidence that seem to suggest a reappraisal of this part of the analysis.
Again, however, the exhaustification component will not need to play any role in our

538



Zero, null individuals, and nominal semantics

narrative here.

4 Null individuals and the analysis of classifiers and unit nouns

4.1 Unit nouns are like measure terms

We will begin the analysis with classifiers and unit nouns, because it is there that the
analytical picture is clearest and the consequences most readily discerned.

Unit nouns like fan1 ‘grade’ and kaa1 lou6 leoi5 ‘calories’ are inherently about
measurement along a scale specified by the noun, and so they can be conceptualized
as corresponding to measure functions, as in (23):

(23) a. ‘zero calories’: µcalories(x) = 0
b. ‘zero grade’: µgrade(x) = 0
c. ‘zero age’: µyears(x) = 0

Thus to say that an individual has zero calories is to say that a measure function
µcalories that maps individuals to the number of calories they contain yields 0 when
applied to that individual. These means that they are rather like measure terms such
as English liters or inches.

The next question, then, is what then are measure terms like? Answers are
available. Scontras (2014), building on Krifka (1989) and others, proposes that
measure terms combine first with a complement that denotes a kind and second with
a numeral to yield a property of individuals whose measure along the appropriate
dimension is the numeral’s denotation. Thus pounds will work as in (24) (where n is
a variable over numbers, construed as a variety of degree, and ∪ type shifts a kind to
the property of being a realization of it in the style of Chierchia 1984, 1998):

(24) a. JpoundsK = λkλnλx[∪k(x)∧µpounds(x) = n]
b. J30 pounds of cheeseK = JpoundsK(JcheeseK)(J30K)

= λx[∪CHEESE(x)∧µpounds(x) = 30]

Concretely, JpoundsK combines with a kind (CHEESE), a number (30, conceptualized
as a degree), and an ordinary individual, and requires that the individual be a
realization of the kind and that the number express its measure using the µpounds
measure function.

This semantics for measure terms straightforwardly extends to Cantonese unit
nouns. The only major difference is that unit nouns don’t occur with complements:

(25) a. Jkaa1 lou6 leoi5 ‘calories’K = λnλx[µcalories(x) = n]
b. J fan1 ‘grade’K = λnλx[µgrade(x) = n]
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This correctly predicts that unit nouns should freely occur with arbitrary numerals,
including zero:

(26) a. J ling4 ‘zero’ kaa1 lou6 leoi5 ‘calories’K = λx[µcalories(x) = 0]
b. J loeng5 ‘two’ kaa1 lou6 leoi5 ‘calories’K = λx[µcalories(x) = 2]

There is, after all, no relevant deep difference between 0 and 1 as the result of an
arbitrary measure function.

4.2 Classifiers are transitive unit nouns

With these assumptions made, classifiers naturally find their place. They are simply
transitive unit nouns. It is no doubt among the oldest observations about classifiers
that their counterparts in non-classifier languages are measure terms. A classifier de-
notation, then, would have essentially the same shape as a measure term denotation,
including the kind-denoting complement. After all, there are good independent rea-
sons to think Chinese bare nouns denote kinds (Chierchia 1998 a.o.). Scontras (2014)
goes down this analytical road, arriving at denotations like (27):

(27) Jgo3 ‘CL.unit’K = λkλnλx[π(k)(x)∧µcard(x) = n]

The general classifier go3 thus does two things. Starting with the second conjunct,
its first task is to measure an individual in its cardinality. That’s represented here
with a measure function µcard to highlight the parallel to unit nouns and measure
terms, but of course its precisely what was indicated elsewhere above with | · |. As
for the first conjunct, it makes use of a partition function π . This function applies
to a kind, but does something slightly more subtle than the plain kind-to-property
type-shift ∪. It individuates a kind into non-overlapping portions of its realizations.
Applying to the kind CHEESE, for example, it would yield properties of portions of
cheese. This largely converges with the classifier semantics of Jenks (2011).

This yields a very natural semantics for how classifiers combine with non-zero
numerals. To express ‘two friends’, this classifier denotation would combine with
the kind FRIEND to yield a property of individuated non-overlapping friend-portions
whose measure on the cardinality scale is two:

(28) J loeng5 ‘two’ go3 ‘CL.unit’ pang4 jau5 ‘friend’K
= Jgo3 ‘CL.unit’K(J loeng5 ‘two’K)(Jpang4 jau5 ‘friend’K)
= λx[π(FRIEND)(x)∧µcard(x) = 2]

But what we’d like to explain is not just how classifiers combine with numerals, but
also why they systematically fail to combine with ‘zero’. There is no progress on that
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front yet. Given these assumptions, ‘zero’ would work just as well compositionally
as any other numeral:

(29) J ling4 ‘zero’ go3 ‘CL.unit’ pang4 jau5 ‘friend’K
= λx[π(FRIEND)(x)∧µcard(x) = 0]

So there’s a piece of the picture that’s not yet in place.

4.3 Why is ‘zero’ special?

One strategy for adding this component would be to treat it as a presupposition: clas-
sifiers, one might suppose, simply presuppose that their number argument is not zero:

(30) Jgo3 ‘CL.unit’K = λk . λn : n 6= 0 . λx[π(k)(x)∧µcard(x) = n]

This would work perfectly well, but it doesn’t capture the generalization about
classifiers and zero. It’s not just go3 that has this presupposition, after all. It seems to
be all classifiers. If this were just a matter of presupposition, we should expect there
to be some—even if only vanishingly few—exceptional classifiers that happen not
to have such a presupposition. If it’s a fact that has to stipulated for each classifier,
it’s precisely the sort of thing that we might expect to also vary lexically. Moreover,
if there were such presuppositions, one might also expect arbitrary other similar
numerical presuppositions, such as a requirement that the numeral be greater than 2,
say. Conversely, on this approach it should also be the case that some unit nouns
by chance happen to also have a numeric presupposition of this form, with the
result—contrary to fact—that some unit nouns should disallow ‘zero’. And of course
if this were a purely lexical fact, it should be possible to coin classifiers that allow
zero or unit nouns that don’t.

But none of these expectations are met. No classifier is compatible with ‘zero’.
No unit nouns is incompatible with it.

Faced with this, one might feel tempted into a weaselly game of hide-the-
presupposition. Perhaps it’s not each classifier that has a presupposition, as a lexical
stipulation. Perhaps instead it’s all about the cardinality measure function µcard
itself? Perhaps it is simply not defined for any individual with zero cardinality.
Effectively, the presupposition would be not for each classifier, but rather for how
cardinality measurement works.

That’s reasonable, but odd. After all, cardinality is conceptually basic. There
is no reason to expect different cardinality measure functions across languages.
More disconcerting, where in the theory could one put such a fact? How could
the grammar encode that this restricted cardinality measure function is present in
Cantonese, and, more puzzling, that no other cardinality measure function is?
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If one is inclined to be sufficiently radical, these question have answers. One
could, for example, suppose that denotations are composed exclusively of atomic
building blocks in the language of thought à la Jackendoff or semantic primes in a
Natural Semantic Metalanguage à la Wierzbicka. Cardinality measurement might
have a claim to being such a building block. But then how to reflect that two
languages might have different dialects of thought itself? The point of such things
is that they are to be universal. It seems a bridge too far to suppose that English
speakers and Cantonese speakers make use of different thought dialects. And if
it were true, what would this mean? That speakers with one form of cardinality
measurement couldn’t conceive of the other? That’s deeply implausible, and the
moment one accepts that implausibility it becomes inescapable that the notion of
cardinality measurement itself should not, in fact, vary in such a way.

The more straightforward move—and ultimately the more conservative one—
is nevertheless bold and interesting, but better motivated and less conceptually
problematic. It is to simply assume that zero-membered pluralities don’t exist in
the ontology of Cantonese, and that they do in the ontology of English. This would
have the consequence that zero would exist robustly in Cantonese as a degree, and
that measure functions in general could yield that degree as a measure—but one
particular measure function, cardinality, would never yield zero because there would
be no plural individuals that have that as a measure of their cardinality.

Assuming that classifier denotations are always framed in terms of cardinality,
this will have the result that any instance of using a classifier with zero would yield a
false claim. But that on its own is not enough: classifiers with zero make a sentence
ill-formed, not merely false. The crucial additional step is in the kind of falsehood
involved. Any sentence that uses zero with a classifier is necessarily false. If the
model excludes null individuals in principle, it would follow that sentences that
that require zero cardinalities would be false irrespective of any contingent fact of
the world. They would be unusably uninformative by virtue of the design of the
language, and it is this that explains the ill-formedness of sentences in which zero
occurs with a classifier.

But what design is this, exactly, and what does it mean to have such a design?
That’s the aim of section 4.4 immediately below. Before addressing that, one big
picture point. We started with the Null Individual Hypothesis, the claim that the
ontology of natural language includes null individuals. If English has them and
Cantonese lacks them, it would seem that the hypothesis is true in a larger sense,
but should be reformulated as a Null Individual Parameter, to be set positively for
languages that have them and negatively for ones that lack them.

542



Zero, null individuals, and nominal semantics

4.4 What does it mean to lack null individuals?

Supposing that English and Cantonese vary in whether null individuals are present
in their models, however, is not unproblematic either.

A null plurality is, after all, simply the plural individual formed from the null
set. So, one might suppose, claiming that null pluralities don’t exist in the ontology
of a language would be like claiming that the null set doesn’t exist in its ontology.
But of course, because the model is a set-theoretic object, it’s impossible for it not to
include the null set at least in the sense that the null set is a subset of every set. So
long as plural individuals are freely assembled from arbitrary sets of individuals, one
might conclude that there is no way to exclude them from the model entirely. What
we can do is define the pluralization operator in a way that includes or excludes null
pluralities from the extensions of pluralized predicates. This is what Bylinina &
Nouwen do in defining the two pluralization operators * and × differently.

But this is not the only way to look at it. We’ll proceed in two parts. First, we’ll
reflect on whether including null pluralities—even in the definitions of pluralization
operators—is conceptually more natural than excluding them. Then we’ll ask
the same question at the level of the model and illustrate the connection between
characterizing pluralization operators and characterizing the model itself.

The definition of pluralization operators in Bylinina & Nouwen suggests that the
zero-including pluralization operator × is simpler and conceptually more natural,
and that the zero-excluding one requires a clunky extrinsic stipulation. It suggests,
essentially, that null pluralities are the null hypothesis. They define Link (1983)’s
pluralization operator with a conjunct that rules out pluralities formed by joining the
members of the empty set (repeating this definition yet again):

(31) *Z def
= {tX : X ⊆ Z∧X 6=∅}

One is tempted to read too much into this. An alternative that doesn’t give rise to
this temptation is to build pluralities by joining not subsets of Z but rather tuples of
its members (where Zn is the set of n-tuples of members of Z and tX is the join of
the tuple X):

(32) *Z def
= {tX : X ∈ Zn} for any natural number n

This defines the extension of a pluralized predicate as the set of pluralities built by
joining any tuple of members of the corresponding singular predicate’s extension.
This too excludes null individuals, because no tuple formed from Z is empty.1 Its
significance is only that it diminishes the rhetorical effect of the earlier definition.

1 At least it does so if we assume—as is standard and desirable—that singular extensions are composed
of singular individuals, and don’t include a null element (the zero or bottom element of a lattice, ⊥)
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It’s possible to go further. It’s not just that null individuals aren’t inevitable or
even necessarily more natural when constructing plural predicates. The same holds
when populating the model itself. We’ll elaborate on this below, but in brief the
point is that the domain of individuals can be a full lattice, with a bottom or zero
element ⊥, or it can be a semilattice, without one, and neither option is preferable in
principle—but the choice is empirically consequential.

To illustrate, suppose the model includes a set of atomic individuals, Atoms.
The task will be to assemble from this a domain of individuals, De, that includes
both atomic and plural individuals but not null pluralities. Essentially following
Link, we could do this as in (33) (where ‘individual sum’ is the operation of joining
individuals to create pluralities, indicated with t):2

(33) THE DOMAIN OF INDIVIDUALS (WITHOUT NULL PLURALITIES)

a. All atomic individuals are in De: Atoms⊆ De.
b. De is closed under individual sum formation; the individual sum of any

two individuals in De is also in De: ∀x ∈ De ∀y ∈ De[xt y ∈ De].
c. Nothing else is in De.

This defines the domain of individuals in a way that excludes null pluralities, because
clause (33b) is framed in terms of joining members of De, not subsets of it, just like
the set-membership-based definition of the pluralization operator in (32).

This means in turn that the two ways of thinking about pluralization—the zero-
excluding standard pluralization * and the zero-including alternative ×—correspond
to two ways of thinking about the domain of individuals itself. One can define it as
in (33), with null individuals excluded. Or one could do so instead as in (34), where
plural individuals are assembled from subsets and null pluralities are included:

(34) THE DOMAIN OF INDIVIDUALS WITH NULL PLURALITIES

a. All atomic individuals are in De: Atoms⊆ De.
b. De is closed under generalized sum formation; that is, the generalized

individual sum of any subset of De is also in De: ∀X ⊆ De[tX ∈ De].
c. Nothing else is in De.

These are not distinctions in the denotation of any linguistic expression, or even in the
definition of any predicate of the logic. They are ontological distinctions, different
design choices in the organization of the model. Neither is a priori preferable. But
the choice does have empirical consequences. A model with null pluralities would

which, otherwise, could be joined with itself and thereby slip back in, unbidden and unwelcome.
2 In (33) and in (34), the assumption is that Atoms does not include ⊥.
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allow them to occur in the extensions of pluralized predicates. A model without
them wouldn’t.3

So, returning to the key question, what does it mean to for a language to lack null
individuals? It just means that its model is structured in a way that doesn’t include
null individuals in the domain of individuals. What is interesting is that it makes
the choice between these two ways of characterizing individuals a point of variation
between languages. This is ultimately just what Bach (1981, 1989) called natural
language metaphysics: drawing ontological conclusions from linguistic facts. The
twist here is that when one language suggests a different ontological conclusion than
another, we can embrace them both and capture the difference.

For Cantonese, this means that its classifier constructions reveal it has chosen a
model without null pluralities. It can and does still use zero robustly as a degree in
many different contexts, with one notable exception: when cardinality is measured.
In that instance, the language has made ontological choices that eliminate the
possibility of zero cardinalities in principle.

5 Notes on the analysis of chance nouns

We have yet to return to an intriguing part of the picture: chance nouns. As a
reminder: these nouns prohibit a classifier with zero and either require one with
ordinary numerals or else prohibit ordinary numerals entirely. They are interestingly
similar to their English counterparts. We will confine ourselves to some brief notes.

Part of the puzzle is already explained. When chance nouns occur with classifiers,
zero is ruled out. That is of course expected. What is special is the fact that zero,
and not ordinary numerals, are possible even without a classifier.

The simplest approach would be to simply suppose that zero can occur as an
argument of chance nouns, following Chen (2018), who first described these facts
for English. Thus, gei1 ui2 ‘chance’ could have a denotation as in (35):

(35) a. Jgei1 wui2 ‘chance’K = λn : n < 1.λx[chance(x)∧µchance(x) = n]

b. J ling4 gei1 wui2 ‘chance’K = λx[chance(x)∧µchance(x) = 0]

In (35a), a presupposition is installed ensuring that numbers one and higher are
impossible. Importantly, the reading at stake here is the one that means roughly
‘probability’ and not ‘opportunity’. The latter is essentially just a concrete noun
homophone of gei1 ui2 ‘chance’.

3 More precisely, if a predicate of atomic individuals P is of type 〈e, t〉, pluralizing it in the zero-
inclusive way as ×P in a model that excludes null individuals would have the same effect as doing so
in the zero-exclusive way as *P. That’s because null pluralities would be excluded from the domain
of both of them, because null pluralities would not be members of De.
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This presupposition is a rather brazen stipulation, though. One might imagine
that part of it follows from the nature of probability measurement, where the scale
of probability measurement is closed on top at 1. That wouldn’t explain why 1 itself
is also impossible. It’s also not entirely clear whether this fact is sufficient to explain
the ill-formedness of numbers higher than 1 in the absence of a classifier. Certainly,
such sentences would be false, but it’s not obvious whether this counts as the kind of
grammatically-induced necessary falsehood that results in ill-formedness, in the same
spirit as the ill-formedness of classifiers with zero in the section 4 immediately above.

There is, however, much more to say. In English as in Cantonese, chance-
nouns are also systematically compatible with fractions and percentages. In both
languages, they seem to associated with closed scales, in the sense of Kennedy &
McNally (2005) and many others. In Cantonese and perhaps in English too, they
yield an arguably compound-like syntactic structure. (In Cantonese, they license
the modificational particle ge, the Cantonese counterpart to Mandarin’s famous de
particle). And in both languages, the numerical arguments seem to measure non-
monotonically, in the sense of Schwarzschild (2006), and it’s precisely in smaller
compound(-like) structures where such non-monotonic measurement is expected.
All these analytical strands are left for future research.

There are, however, two analytical directions worth highlighting, one a con-
sequence of the other. First, instead of assigning these nouns a degree argument
directly, one could treat them instead as denoting a property of a suitable abstract
object. One candidate class of abstract objects is tropes (Moltmann 2009). The other
is property concepts (Francez & Koontz-Garboden 2017).

Pursuing either of these possibilities would be beyond the scope of this paper, but
at least on the property concepts approach (and perhaps but less clearly for tropes), an
interesting ontological twist is available. The driving idea behind property concepts
is that things like ‘wisdom’ can be said to be an intangible material whose amount
can be measured, so that one can say that someone has a great deal of wisdom or
very little of it as a way of indicating how wise they are. The most straightforward
implementation of this idea to chance nouns would be to suppose that, for example,
‘zero trust’ involves measuring the amount of an abstract portion, and finding it to be
zero. Would that be contrary to the bulk of our analysis, which revolves around the
fact that no cardinality measurement can be zero in Cantonese? Not really, because
of course measuring the amount of a mass individual is not the same as measuring the
cardinality of a plurality. But this would nevertheless mean that although Cantonese
has no zero-membered pluralities, it would have zero-amount portions.

That’s an intriguing possibility on its own terms, but especially so because it
suggests that the Null Individual Hypothesis—and especially its parameter cousin—
should actually be divided up into more fine-grained claims about particular varieties
of null individual. Indeed, it suggests a typology of flavors of zero, in which
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languages could choose some options and not others. For example, a language might
have zero degrees, but lack zero-amounts and zero-pluralities; or it might lack them
all entirely; or it might actually allow zero more robustly than any language we’re
aware of, including perhaps null singular individuals too.

6 Conclusion

To summarize, we have used the grammar of ‘zero’ as a probe into nominal se-
mantics in Cantonese—in particular into unit nouns, classifiers, chance nouns, and
numerals. Strikingly, Cantonese uses zero extensively, in many different corners of
the grammar. These include two different classes of constructions (unit nouns and
chance nouns) and a wide variety of scales (essentially, all scales other than cardi-
nality measurement). But curiously, Cantonese prohibits zero in exactly the places
where having it would require having zero-membered pluralities. The language is
going out of its way to tell us that, as a matter of natural language metaphysics, it
simply lacks them.

This leads to interesting questions about variation and natural language meta-
physics. In the particular case of zero, various conceptual possibilities are available
in what kind of zero a language might be said to have. Indeed, the concept of zero
is a fairly recent human invention, and in most languages the word and concept (or
rather, multiple related concepts) are both borrowed. This means that there must
be a narrative to be told about how languages grow a zero: how they develop from
lacking one entirely to various degrees of nativizing or ‘domesticating’ it.

The big-picture conclusions are that the Null Individual Hypothesis is true for
English and false for Cantonese. That makes it more of a Null Individual Param-
eter, an axis for variation. Perhaps this would make it like the Degree Semantics
Parameter of Beck, Krasikova, Fleischer, Gergel, Hofstetter, Savelsberg, Vanderelst
& Villalta (2009) and subsequent work. There is, however, a crucial distinction.
Although one often talks in general terms about whether a language ‘has’ or ‘lacks’
degrees, on its most careful interpretation this isn’t a claim about the model, and
so it’s not irreducibly an ontological one. As originally formulated, the Degree Se-
mantics Parameter is about the lexicon: whether the lexicon of a language includes
predicates with degree arguments. In principle, one might imagine a similar strategy
here too, making the claim about having or lacking zero actually a claim about
the lexicon. Yet Cantonese beckons us in another direction, more appealing and
perhaps more provocative: to placing the locus of variation squarely in the model
itself. If that’s not misguided, linguistic variation can take the shape of ontological
variation more generally. One might imagine a wide variety of other natural language
metaphysics parameters—different constraints on the design of models and different
linguistic effects that arise as a consequence of them.

547



Chow and Morzycki

References

Bach, Emmon. 1981. On Time, Tense, and Aspect: An Essay in English Meta-
physics. In Peter Cole (ed.), Radical Pragmatics, 63–81. New York: Academic
Press.

Bach, Emmon. 1989. Informal Lectures on Formal Semantics. Stony Brook: State
University of New York Press.

Beck, Sigrid, Sveta Krasikova, Daniel Fleischer, Remus Gergel, Stefan Hofstetter,
Christiane Savelsberg, John Vanderelst & Elisabeth Villalta. 2009. Crosslin-
guistic variation in comparative constructions. In Jeroen van Craenenbroeck &
Johan Rooryck (eds.), Linguistic Variation Yearbook, vol. 9, 1–66. Philadelphia:
John Benjamins. doi:10.1075/livy.9.01bec.

Bresnan, Joan. 1973. Syntax of the comparative clause construction in English.
Linguistic Inquiry 4(3). 275–343.

Bylinina, Lisa & Rick Nouwen. 2018. On “zero” and semantic plurality. Glossa
3(1). 98. doi:http://doi.org/10.5334/gjgl.441.

Champollion, Lucas & Manfred Krifka. 2015. Mereology. In Maria Aloni &
Paul Dekker (eds.), Cambridge Handbook of Semantics, 369–388, Cambridge
University Press. http://ling.auf.net/lingbuzz/002099.

Chen, Sherry Yong. 2018. Zero degrees: numerosity, intensification, and negative
polarity. In Chicago Linguistics Society (CLS) 54.

Cheng, Lisa Lai-Shen & Rint Sybesma. 1999. Bare and not-so-bare
nouns and the structure of NP. Linguistic Inquiry 30(4). 509–542.
doi:10.1162/002438999554192.

Chierchia, Gennaro. 1984. Topics in the Syntax and Semantics of Infinitives
and Gerunds: University of Massachusetts Amherst PhD dissertation. http:
//search.proquest.com/docview/303307786?accountid=12598.

Chierchia, Gennaro. 1998. Reference to kinds across languages. Natural Language
Semantics 6(4). 339–405. doi:10.1023/A:1008324218506.

Chierchia, Gennaro. 2004. Scalar implicatures, polarity phenomena, and the
syntax/pragmatics interface. In Adriana Belletti (ed.), Structures and Beyond:
The Cartography of Syntactic Structures, 39–103. New York: Oxford University
Press.

Francez, Itamar & Andrew Koontz-Garboden. 2017. Semantics and Morphosyntac-
tic Variation: Qualities and the Grammar of Property Concepts. Cambridge:
Cambridge University Press. doi:10.1093/acprof:oso/9780198744580.001.0001.

Gobeski, Adam & Marcin Morzycki. To appear. Odds, probabilities, scores, and the
interpretation of measure phrases. In Sinn und Bedeutung (SuB) 26, .

Hackl, Martin. 2000. Comparative Quantifiers: MIT PhD dissertation.

548

http://dx.doi.org/10.1075/livy.9.01bec
http://dx.doi.org/http://doi.org/10.5334/gjgl.441
http://ling.auf.net/lingbuzz/002099
http://dx.doi.org/10.1162/002438999554192
http://search.proquest.com/docview/303307786?accountid=12598
http://search.proquest.com/docview/303307786?accountid=12598
http://dx.doi.org/10.1023/A:1008324218506
http://dx.doi.org/10.1093/acprof:oso/9780198744580.001.0001


Zero, null individuals, and nominal semantics

Haida, Andreas & Tue Trinh. 2020. Zero and triviality. Glossa: A Journal of
General Linguistics 116. doi:http://doi.org/10.5334/gjgl.955.

Jenks, Peter Spiros Eric. 2011. The Hidden Structure of Thai Noun Phrases: Harvard
PhD dissertation.

Kennedy, Christopher & Louise McNally. 2005. Scale structure, degree modifi-
cation, and the semantics of gradable predicates. Language 81(2). 345–381.
doi:10.1353/lan.2005.0071.

Krifka, Manfred. 1989. Nominal reference, temporal constitution, and quantification
in event semantics. In Renate Bartsch, Johan van Benthem & Peter van Emde
Boas (eds.), Semantics and Contextual Expression, 75–115. Dordrecht: Foris.

Link, Godehard. 1983. The logical analysis of plurals and mass terms: A lattice-
theoretical approach. In Rainer Bäuerle, Christoph Schwarze & Arnim von
Stechow (eds.), Meaning, Use, and Interpretation of Language, Berlin: Walter
de Gruyter.

Moltmann, Friederike. 2009. Degree structure as trope structure: a trope-based
analysis of positive and comparative adjectives. Linguistics and Philosophy
32(1). 51–94. doi:10.1007/s10988-009-9054-5.

Nouwen, Rick. 2015. Plurality. In Maria Aloni & Paul Dekker (eds.), Cambridge
Handbook of Semantics, 267–284, Cambridge: Cambridge University Press.

Schwarzschild, Roger. 2006. The role of dimensions in the syntax of noun phrases.
Syntax 9(1). 67–110.

Scontras, Gregory. 2014. The Semantics of Measurement: Harvard PhD dissertation.
Solt, Stephanie. 2009. The Semantics of Adjectives of Quantity: The City University

of New York PhD dissertation.

Marcin Morzycki
Dept. of Linguistics, UBC
Totem Field Studios
2613 West Mall
Vancouver BC V6T 1Z4
Canada
marcin.morzycki@ubc.ca

Hary Chow
Dept. of Linguistics, UBC
Totem Field Studios
2613 West Mall
Vancouver BC V6T 1Z4
Canada
harychow@gmail.com

549

http://dx.doi.org/http://doi.org/10.5334/gjgl.955
http://dx.doi.org/10.1353/lan.2005.0071
http://dx.doi.org/10.1007/s10988-009-9054-5
mailto:marcin.morzycki@ubc.ca
mailto:harychow@gmail.com

