Proceedings of SALT 34: 356-369, 2024

Determiners do not need to manage donkey anaphora*

Anand Abraham
University of California, Los Angeles

Abstract If a quantificational determiner denotes a relation between the restric-
tor and the scope, then in order to handle donkey anaphora, the transmission of
anaphoric information from the restrictor to the scope must be baked into the lexi-
cal semantics of the determiner. By analyzing quantification as unary, rather than
relational, I show that donkey anaphora can be accounted for without defining
determiners which explicitly manage the flow of anaphoric information.

Keywords: semantics, donkey anaphora, modification, quantification

1 Introduction

Quantificational determiners have relatively simple core meanings. For example,
most means something like (1).

(1) most(A)(B) =|ANB| > ;|A]

But such a meaning for most is inadequate for dealing with donkey anaphora,
sentences such as (2).

(2) Most students who saw a dog pet it.

The problem is that there is an anaphoric relationship between dog and it, but there
is no way for this relation to be established in a simple semantics.

To give an analysis of donkey anaphora, it is necessary to add more complexity to
the semantics. Something has to facilitate the transmission of anaphoric information,
so that the donkey antecedent can bind the donkey pronoun. In doing so, it is
necessary to complicate the semantics of quantificational determiners. Dynamic
approaches (e.g. Heim 1982; Muskens 1996) replace truth values with context
update functions, so that anaphoric information can be stored in and retrieved from
the context. A dynamic generalized quantifier, like Chierchia’s (1992) in 3),!
dynamically conjoins the restrictor to the scope to ensure that anaphoric information
introduced in the restrictor is accessible in the scope.

+ Thanks to audiences at SALT 34 and UCLA for helpful comments and questions. Thanks also to
Dylan Bumford for much useful discussion.
1 Given as part of a general scheme for lifting ordinary generalized quantifiers to dynamic versions.

©2024 Abraham

http://elanguage.net/journals/index.php/salt

Determiners do not need to manage donkey anaphora

3) [most](P)(Q) =t most({x | “P(x)})({x || "P(x)A"Q(x)})

Situation-based e-type approaches (e.g. Heim 1990; Elbourne 2001) analyze donkey
pronouns as definite descriptions, which can pick out the appropriate antecedent
from a minimal situation. A situation-based generalized quantifier, like Heim’s
(1990) in (4), checks for each element whether any minimal situation satisfying
the restrictor can be extended to a situation satisfying the scope, passing anaphoric
information through the situation variable.

@ [Imostys, Ll =
[{x | min({sq | [{]¥\11}) C {s1 | Tsp.81 < sp A[[@][E\xs1\s152\2 1]|
> %HX | 381.[[4:]]&\“1\51 }‘

One thing both of these approaches have in common is that it is the role of the
quantificational determiner to manage the transmission of anaphoric information
from the restrictor to the scope. Under standard assumptions about the syntax-
semantics of quantification, this choice is forced. If a quantifificational deteminer
denotes a relation between the restrictor and the scope, then there is no place for the
restrictor and scope to communicate without the mediation of the determiner.

There is reason to be dissastisfied by this. Why should determiners be respon-
sible for handling donkey anaphora? In principle, quantification and anaphora are
separate phenomena. Tying the analyses of quantification and anaphora together
is undesirable for the sake of theoretical modularity: any change in the analysis of
anaphora requires also coming up with a scheme for writing generalized quantifiers
in a way that respects anaphora.

One analysis of donkey anaphora which avoids this is that of Barker & Shan
(2008). They accomplish this by splitting the semantics of determiners into two
levels, allowing indefinites to scope between these layers. As a result, a donkey
indefinite scopes over a donkey pronoun and binds it normally. Unfortunately, this
turns out to be too liberal, allowing for violations of the Binder Roof Constraint
(Brasoveanu & Farkas 2011), which they discuss in Barker & Shan 2014. The present
approach draws heavy inspiration from theirs, treating quantifiers and pronouns as
involving scopal layers.

There is a way to avoid hard-coding management of anaphoric information into
the semantics of determiners: by changing the syntax-semantics of quantification. I
propose that the semantic contribution of a quantificational phrase be decomposed
into two steps. When a quantificational phrase enters a structure, it introduces its
domain, which is semantically available for anaphora and modification. At a higher
position, a unary quantificational operator applies. The determiner in its base position
has no semantic contribution, only marking a phrase for future quantification. On this
approach, anaphoric relationships can be established before quantification happens,
and quantification only has to deal with counting, not anaphora. Donkey anaphora

357

Abraham

in particular arises as a special interaction between indefiniteness and restrictive
modification, where a modifier with an indefinite in it can add extra information to
its host, which is available for anaphora.

2 Separating the domain from quantificational force

In order to introduce the domain of quantification separately from quantification, I
extend Jager’s (2001) use of partial identity functions to all noun phrases, recording
domain information in the domain restriction of the partial function. These are
associated with higher operators, which actually perform the quantification over the
domain. I write &>, 3 as a type of partial functions from Dy to Dg, where ¥ is
an annotation encoding quantificational force. For example, most students has the
denotation and type (separated by ::) in (5).

(5) [[most students]] = Ax : student(x).x :: e>pe

The domain of quantification (students) is encoded in the domain of the partial
function.

A type like o>, B behaves functorially: that is, it can behave as an element of
type B for the purposes of combination, while propagating the partial dependency
on « to the result. Formally, this is handled through the use of combinators which
generate new rules of combination from existing ones. See Bumford & Charlow
2024 for more on this sort of compositional architecture.

(6) Anya : aandb :: a— P can be combined via app, with app(a,b) = b(a)
(7) a.If ris arule of combination that takes any a :: acand b :: B tor(a,b) :: ¥,
then L(r) is a rule of combination that takes any a :: 6>y and b :: fB

to L(r)(a,b) = Ax : x € dom a.r(a(x),b), of type 8 > 7.
b. If r is a rule of combination that takes any a :: ¢ and b :: B to r(a,b) :: ¥,

then R(r) is a rule of combination that takes any a :: o and b :: 0>, B
to R(r)(a,b) = Ax:x € dom b.r(a,b(x)), of type 0 > 7.

L makes it possible to propagate a partial dependency from the argument in function
application, R makes it possible to propagate one from the function. As an example,
L can be used to combine most students and a simple predicate like laughed.

(8) [[most students laughed]] = L(app)([most students]|, [laughed]))
= L(app)(Ax : student(x).x, Ay.laughed(y))
= Ax : student(x).app(x, Ay.laughed(y))
= Ax : student(x).laughed(x) :: e>mt?

It will often be more clear to represent derivations like (8) using the notation in 9).2

2 Taking inspiration from the tower notation of Barker & Shan 2008

358

Determiners do not need to manage donkey anaphora

9) e>mt
Ax : student(x).
laughed(x)
ebme e—t
Ax :student(x). T,

X app Ay.laughed(y)
most students laughed

In such a representation, each extra vertical level represents the application of a
combinator. At the bottom level, there is function application, and at the second
level there is the application of L, to allow the Ax : student(x) to “pass over” the
function application at the base level.

L and R can apply to rules created by each other, allowing the layering of
different quantifiers. In (10), a derivation is given of most students saw a dog.

(10) e>pel>gt
Ax : student(x).
Ay :dog(y).
saw(x,y)
e>me e>ge —t
Ax : student(x). L
R Ay dog(y).
X app lz.saw(z,y)
most students
e—e—t el>ge
L Ay:dog(y).
Aw.Az.saw(z,w) app Yy
saw a dog

When composing two constituents with quantifiers, there are multiple ways to
put them together, corresponding to different scopings. For example, if the rule
R(L(app)) was used in the last step of (10), inverse scope would have been derived.

Quantification happens through the application of a closure operator keyed to
the partial dependency. For most, there is the associated operator m.
(1) m=2¢.|{x|x€dom@,@(x)}| > 3|{x|x€dom @} :: (e>mt) —1
This can be applied to the result of (8) to get a truth value.
(12) app(Ax:student(x).laughed(x),m) = |{x | student(x),laughed(x)}|

> %|{x | student(x)}|

359

Abraham

These operators can also make use of L. and R for combination. For example, to
evaluate (10) it is necessary to apply existential closure under the e >y, , as in (13).

(13) dJ=A¢@.3xxcdom @A @(x) :: (e>gt) =t
L(app)(Ax : student(x).Ay : dog(y).saw(x,y),3)
= Ax : student(x).app(Ay : dog(y).saw(x,y),3)
= Ax :student(x).dy : dog(y) Asaw(x,y) 1 e>mt

The idea that quantification should be decomposed into the introduction of the
domain and the quantification over that domain is not new. Bumford (2017) uses a
similar strategy to handle the semantics of definites, decomposing the semantics of
the into a referent-introducing and uniqueness component. Arguably, any invocation
of existential closure is an instance of split quantification, too. What I am proposing
here is that all quantification can be understood in this way. Rather than taking in the
restrictor and scope separately, quantification is unary, taking in one object which
contains information about both the restrictor and scope.

A benefit of this approach to quantification is that only conservative quantification
is possible. The only quantifiers definable as functions of type (e>t) — ¢ are the
conservative ones. An object of type e >t contains three pieces of information:
what the domain is, which elements of the domain the scope is true on, and which
elements of the domain the scope is false on.? It does not contain any information
about the scope on elements outside of the domain. As such, non-conservative
quantification is impossible. This is a good thing, as probably all natural language
determiners are conservative (Keenan & Stavi 1986; Barwise & Cooper 1981).

3 Anaphora as unification

Anaphora is handled in the manner of Jacobson 1999: by treating pronouns as
identity functions. A pronoun is an identity function of type e >, e, where p is a
special annotation reserved for pronouns. Unlike quantifiers, pronouns can be bound,
which necessitates a special rule for binding them (to be generalized in § 4).

(14) Ifrisarule that takes any a :: aand b :: B tor(a,b) :: 61>, 0>p 7, then
bind(r) is a rule that takes any @ :: o and b :: 3 to bind(r)(a,b) =
Ax:x € dom r(a,b),x € dom r(a,b)(x).r(a,b)(x)(x) :: S>>,

This makes binding possible at combination. Any time a rule would scope a pronoun
over a quantifier, bind makes it possible for that pronoun to be bound instead. (15)
gives a derivation of the sentence A dog sniffed itself.

3 This approach to quantification is very similar to that of Pietroski (2005), who argues that quantifiers
are predicates of pluralities of Frege-pairs (roughly, individuals paired with truth-values).

360

Determiners do not need to manage donkey anaphora

(15) >3t
Ax : dog(x).
sniffed (x,x)

/\

el>je e>pe—t
Ax:dog(x). bindoLoR Ax.
x app Az.sniffed(z,x)
adog T
e—e—rt e>pe
L Ax.
Aw.Az.sniffed(z,w) app x
sniffed itself

It should be noted that the present system of binding allows for complete freedom
in binding: a pronoun can be bound by anything that scopes higher than it. There is
no c-command restriction, nor is there any linear order restriction. The former fact is
necessary to the account, as donkey anaphora involves binding without c-command.
The latter does require a stipulation to fix, to prevent crossover. One such stipulation
would be to prevent any quantifier from scoping over any pronoun to its left, thus
preventing binding. While it remains unexplained why such a restriction exists, it
only has to be stipulated in one place, rather than both in the rules of binding and in
the denotations of each quantifier.

4 Modification and donkey anaphora

A characteristic feature of donkey anaphora is that it involves the presence of an
indefinite in the restrictor of a quantificational operator. I propose that this is how
donkey quantification arises: an indefinite inside a restrictive modifier does not
have to undergo existential closure, and may instead attach itself to whatever that
modifier modifies. In order to facilitate this, I propose that modification works in the
same way as anaphora, involving the unification of two partial dependencies. The
difference is that a modifier, unlike a pronoun, is not devoid of restrictive content.

The idea that modification is like anaphora is not unprecedented. This is more
commonly proposed for non-restrictive modification: Del Gobbo 2003 and Nouwen
2007 analyze appositives as involving e-type anaphora and dynamic binding, respec-
tively. For restrictive modification, Wittenburg 1987 and Kiss 2005 make similar
proposals to the one I give here in order to account for facts about relative clause
extraposition.

Like pronouns, modifiers are associated with a special annotation, 6. A modifier
is something of type e > (0t —), polymorphic in a. It participates in combination

361

Abraham
by further restricting the domain of a partial function. For example, who laughed
has the denotation in (16).

(16) [who laughed] = Ax : laughed(x).Aa.a :: e>s (@ — @)

Modification is binding: ¢ is the same as p for the purposes of the bind rule. (17)
demonstrates the composition of most students who laughed.*

(17) eme
Ax : student(x),laughed(x).
x
/\
e>me e>s (00—)
Ax:student(x). bindoLoR Ax:laughed(x).
X app Aa.a
most students who laughed

A modifier is formed by first creating something of type e >4 ¢, and then type
shifting it to type e > (0t —). Restriction is done through the type shifter restrict.

(18) restrict =A@.Ax: @(x).Aa.a :: d>st — s (@ —)

This moves content into the restrictor of a partial function. A relative pronoun has
the same meaning as an ordinary pronoun, an identity function. For example, the
meaning of who laughed is derived in (19).

(19) Step 1: Make something of type e >4t

e>gt
Ax.
laughed(x)
/\
e>ge e—t

Ax. L

X app Ay.laughed(y)
who laughed

Step 2: Apply restrict
restrict(Ax.laughed(x)) = Ax : laughed(x).Aa.a :: e>sa@ —

4 While the derivation in (17) involves the relative clause attaching after the determiner does, this is
not semantically forced: the relative clause can attach to the noun if the noun is of type e > e. The
difference between these analyses is not relevant for me here, though Lasersohn 2021 makes a case
that nouns should be analyzed as restricted variables, which a type like e > e is the variable-free
version of.

362

Determiners do not need to manage donkey anaphora

Donkey anaphora happens when a quantificational element and an indefinite in
its restrictor get entangled, restricting each other. In a donkey quantifier like most
students who saw a dog, quantification is limited to students who have seen dogs,
and for each student only dogs who were seen by that student. I model corestriction
by having the denotation of a donkey quantifier be a partial function from tuples to
individuals. For example, most students who saw a dog has a denotation as in (20).

(20) A(x,y) : student(x),dog(y),saw(x,y).x :: exXel>me

An object like this contains all the information that is necessary to do donkey binding,
so long as the definition of binding is appropriately generalized to tuples. These arise
through an interaction between modification and indefiniteness. When an indefinite
is contained within a modifier, it is possible for the indefinite to pair up with the
modifier, through a special rule.

(21) If risarule that takes any a :: @ and b :: B to r(a,b) :: 61>5 8 >3, then
case(r) is a rule that takes any a :: v and b :: B to case(r)(a,b) =
A(x,y) :x €dom r(a,b),y € dom r(a,b)(x).r(a,b)(x)(y) :: § X&' >gy

This is similar to binding, except instead of unifying two partial dependencies, it
puts them side by side. (22) demonstrates the composition of who saw a dog.

(22) exel>gt
A(x,y) : dog(y).
saw(x,y)
e>ge el>ge—t
Ax. caseoLoR Ay :dog(y).
x app Az.saw(z,y)
who saw a dog

To this, restrict can apply just as it did in (19), yielding (23).
(23) [[who saw a dog]| = A(x,y) : dog(y),saw(x,y).Aa.a :: exe>a — o

The last formal ingredient necessary here is a generalization of bind to tuples. A
generalized definition of binding is given in (24).

(24) Ifrisarulethattakesanya :: cand b :: Btor(a,b) :: Ay, (XA)>g7,
where A is a product of types with 0 in its nth coordinate and 6 is either p or
o. Then bind,, () is arule that takes any a :: ocand b :: f to bind,(r)(a,b) =
A(X;Y) : X € dom r(a,b), (X,;;¥) € dom r(a,b)(X).r(a,b)(X)(X,;¥), which is
of type A X A' 1>, ¥

This definition features two extensions to (14). First, any coordinate of a tuple can
bind: binding from the nth coordinate corresponds to bind,. Second, the bindee

363

Abraham

can have extra information outside of its first coordinate, corresponding to donkey
antecedents. This information is tacked onto the end after binding occurs. This
enables the composition of a donkey quantifier.

(25) exel>pe
A(x,y) : student(x),dog(y),saw(x,y).
X

/\

e>pe exepbgsgo — O
Axistudent(x). bindjoLoR A(x.):dog(y).saw(x.y).
X app Aa.a
most students who saw a dog

The pieces are also now in place to give an account of donkey binding. A donkey
quantifier can bind a pronoun through the use of bind, (or in general, bind,;).

(26) exel>npt
A(x,y) : student(x),dog(y),saw(x,y).
pet(x,y)
exel>pe e>pe—t
A(x,y) : student(x),dog(y),saw(x,y). bind,oLoR Ay.
x app Az.pet(z,y)
most students who saw a dog pet it

Donkey binding thus proceeds completely separately from quantification.

5 Donkey quantification

The last step in the interpretation of a donkey sentence is quantification, turning
something of type e X e >, to type ¢. This is not possible with a unary closure
operator like the m given in (11), whose argument is of type e >, ¢, not generalized
to tuples. What is necessary is a procedure for upgrading operators like this to ones
that are capable of quantifying over multiple things at the same time.

The right way to do this is one of the biggest questions in the analysis of donkey
anaphora. The simplest answer is to just quantify over each tuple in the same way
that one might quantify over each individual. Unfortunately, this gives incorrect truth
conditions for proportional quantifiers like most—what is known as the proportion
problem (Kadmon 1987). Similarly, while universally quantifying over the indefinite
often seems correct (the strong reading), it cannot be the only option due to the
existence of weak readings, where the indefinite has existential quantificational
force (Schubert & Pelletier 1989; Chierchia 1992). I will adopt the approach of

364

Determiners do not need to manage donkey anaphora

Brasoveanu 2008, positing a strong/weak ambiguity at the level of each indefinite.
In the context of the approach here, this involves two type shifters: one for strong
readings, one for weak readings.

(27) a.strong = Aq.A@.q(Ax: Jy.(x,y) € dom @.Vy.(x,y) € dom ¢ D ¢(x,y))
D (ODyt—t) > O xe>yt—t
b. weak = A1g.A¢.g(Ax: Jy.(x,y) € dom ¢.Ty.(x,y) € dom @ A ¢(x,y))
2 (ODyt—t) > O xe>yt—t

These type shifters upgrade a unary closure operator to one that is capable of
quantifying over donkeys. Through repeated application, they can upgrade a closure
operator to quantify over multiple donkeys. (28) demonstrates weak in action,
generating the weak reading of (2).

(28) weak(m) =A¢@.m(Ax: 3y.(x,y) € dom ¢.3y.(x,y) € dom ¢ A @(x,y)) =
A@.[{x|3y.(x,y) € dom ¢ A p(x,y)}|
>%|{x|3y.(x,y)edom(p}| mexe>mt—t
weak(m) (A (x,y) : student(x),dog(y),saw(x,y).pet(x,y)) =
[{x | Jy.student(x) Adog(y) Asaw(x,y) A pet(x,y)}|
> %|{x | 3y.student(x) A dog(y) Asaw(x,y)}| ot

This is true if for all the students who saw at least one dog, the majority of them saw
at least one dog and pet that dog, which is the weak reading of (2).

It should be noted that this account of the strong/weak ambiguity is not forced
under this approach to donkey binding. Practically any scheme of donkey quan-
tification is definable in a similar way. But unlike a dynamic scheme for lifting a
relational determiner (which (3) is an instance of), quantifiers here do not manage
anaphoric information.

6 Conditionals

The other classic case of donkey anaphora is from conditionals. In a sentence like
(29), an indefinite within the antecedent antecedes a pronoun in the consequent.

(29) If a dog entered, it barked.

Standard analyses of donkey anaphora handle conditionals in the same way as
quantifiers: there is an operator that denotes a relation between the antecedent and
the consequent, and this operator governs the transmission of anaphoric information
from the former to the latter. In general, it is not enough to say that if denotes a
relation between the antecedent and consequent. If-clauses do not contain their own
quantificational force, as evidenced by modalized conditionals (as argued in Kratzer
1979, building off Lewis 1975).

365

Abraham

(30) If a dog entered, it might have barked.

In (30), there is existential quantification over cases where a dog entered, unlike
(29), where there is universal quantification over them. Heim 1982 handled this by
modeling terms like might as relations between propositions, rather than if. On this
view, both the antecedent and the consequent are arguments of a modal. Donkey
anaphora can be accounted for by having this operator manage the transmission of
anaphoric information.

There is a certain awkwardness to modeling the if-clause as a genuine semantic
argument, though. If-clauses are optional, and moreover, they can be stacked. They
behave more like modifiers than genuine arguments. Kratzer’s (1981) analysis
resolves this mismatch by having if-clauses update a contextual parameter that
determines the domain of modal quantification. The approach I take here works
similarly: an if-clause is a restrictive modifier, in the same way as a relative clause.
Rather than restricting individuals, it restricts worlds. As donkey anaphora arises
in contexts of modification, the same machinery to derive relative clause donkey
anaphora also derives conditional donkey anaphora.

Composing an if -clause works in the same way as composing a relative clause. If
functions as a relative pronoun in the world argument. This means that an indefinite
inside an if-clause can form a tuple with the world-dependency, as in (31).

(31) sXelbgt
A(w,y) : dog(y).
entered(y,w)

S>q s e>gs —t

Aw. caseoLoR Ay: dog(y).
w app Aventered(y,v)
if a dog entered

After applying restrict, this can participate in binding when it combines with the
consequent. Assume that the consequent to a conditional contains a hidden necessity
modal, which can be encoded by adding a s> to its type.

366

Determiners do not need to manage donkey anaphora

(32) sXelnt
A(w,y) : dog(y),entered(y,w).
barked(y, w)

/\

sXePbsg — A spebpt
A(w,y) : dog(y),entered(y,w). bind; o L Aw.
bind, cRoLL AYy.
Aa.a app barked (y,w)
if a dog entered it barked

The mechanics of this are somewhat complicated, since it involves two instances of
binding: one for the donkey pronoun, and one for the modifier. The bind; c Ro LL
scopes the modifier over the pronoun and has the second coordinate of the modifier
bind the pronoun. The bind; o LL then scopes the world-dependency over the modifier
and binds it. This derives donkey binding.

The last step in the interpretation of a donkey sentence is once again quantifica-
tion, and the same strategy holds as with relative clauses: a unary quantificational
operator may be upgraded into one that is capable of handling tuples. (33) demon-
strates this, finishing the derivation of the strong reading of (29).

(33) O=Ap.Ywwedom @ D ¢(w) :: s>ot —t
strong([]) = A ¢.Vw.3y.(w,y) € dom @ D Vy.(w,y) € dom ¢ D @(w,y)
cosxXe>Ot —t
strong(CJ)(A (w,y) : dog(y),entered(y,w).barked(y,w)) =
Vw.Jy.dog(y) Aentered(y,w) D Vy.dog(y) Aentered(y, w) D barked(y,w) :: ¢

This derives appropriate truth conditions for a sentence with conditional donkey
anaphora (modulo other restrictions on the domain of world-quantification).

7 Conclusion

Here I have shown that it is possible to give an analysis of donkey anaphora which
does not hard-code management of anaphoric information into the semantics of
determiners. What is necessary to do this is separating the introduction of the domain
of quantification from the quantificational force, allowing for donkey indefinites
to hook onto this domain before quantification happens. In locating the cause of
donkey anaphora as an interaction between indefiniteness and modification, I also
gave an analysis of conditional donkey anaphora which avoids analyzing modals as
binary operators.

367

Abraham

References

Barker, Chris & Chung-chieh Shan. 2008. Donkey anaphora is in-scope binding.
Semantics and Pragmatics 1. 1-46. doi:10.3765/sp.1.1.

Barker, Chris & Chung-chieh Shan. 2014. Continuations and Natural Language (Ox-
ford Studies in Theoretical Linguistics 53). New York, NY: Oxford University
Press 1st edn.

Barwise, Jon & Robin Cooper. 1981. Generalized quantifiers
and natural language. Linguistics and Philosophy 4. 159-219.
doi:10.1093/0s0/9780195136975.003.0023.

Brasoveanu, Adrian. 2008. Donkey pluralities: Plural information states ver-
sus non-atomic individuals. Linguistics and Philosophy 31(2). 129-209.
doi:10.1007/s10988-008-9035-0.

Brasoveanu, Adrian & Donka F. Farkas. 2011. How indefinites choose their scope.
Linguistics and Philosophy 34. 1-55. doi:10.1007/s10988-011-9092-7.

Bumford, Dylan. 2017. Split-scope definites: Relative superlatives and Haddock
descriptions. Linguistics and Philosophy 40. 549-593. doi:10.1007/s10988-017-
9210-2.

Bumford, Dylan & Simon Charlow. 2024. Effect-Driven Interpretation: Functors
for Natural Language Composition. Oxford University Press (to appear).

Chierchia, Gennaro. 1992. Anaphora and dynamic binding. Linguistics and Philos-
ophy 15. 111-183. doi:10.1007/bf00635805.

Del Gobbo, Francesca. 2003. Appositives and Quantification. University of Penn-
sylvania Working Papers in Linguistics 9(1). 7.

Elbourne, Paul. 2001. E-type anaphora as NP-deletion. Natural Language Semantics
9(3). 241-288. doi:10.1023/A:1014290323028.

Heim, Irene. 1982. The Semantics of Definite and Indefinite Noun Phrases: Univer-
sity of Massachusetts Amherst PhD dissertation.

Heim, Irene. 1990. E-type pronouns and donkey anaphora. Linguistics and Philoso-
phy 13.137-177. doi:10.1007/bf00630732.

Jacobson, Pauline. 1999. Towards a Variable-Free Semantics. Linguistics and
Philosophy 22(2). 117-184. doi:10.1023/A:1005464228727.

Jager, Gerhard. 2001. Indefinites and Sluicing. A type logical approach. In Robert
van Rooy & Martin Stokhof (eds.), The 13th Amsterdam Colloquium, 114-119.
ILLC, University of Amsterdam.

Kadmon, Nirit. 1987. On Unique and Non-Unique Reference and Asymmetric
Quantification: University of Massachusetts Amherst PhD dissertation.

Keenan, Edward L. & Jonathan Stavi. 1986. A semantic characterization of
natural language determiners. Linguistics and Philosophy 9(3). 253-326.
doi:10.1007/BF00630273.

368

https://doi.org/10.3765/sp.1.1
https://doi.org/10.1093/oso/9780195136975.003.0023
https://doi.org/10.1007/s10988-008-9035-0
https://doi.org/10.1007/s10988-011-9092-7
https://doi.org/10.1007/s10988-017-9210-2
https://doi.org/10.1007/s10988-017-9210-2
https://doi.org/10.1007/bf00635805
https://doi.org/10.1023/A:1014290323028
https://doi.org/10.1007/bf00630732
https://doi.org/10.1023/A:1005464228727
https://doi.org/10.1007/BF00630273

Determiners do not need to manage donkey anaphora

Kiss, Tibor. 2005. Semantic constraints on relative clause extraposition. Natural
Language & Linguistic Theory 23(2). 281-334. doi:10.1007/s11049-003-1838-7.

Kratzer, Angelika. 1979. Conditional necessity and possibility. In Semantics from
Different Points of View, 117-147. Springer.

Kratzer, Angelika. 1981. The notional category of modality. In Hans-Jiirgen Eik-
meyer & Hannes Rieser (eds.), Words, Worlds, and Contexts: New Approaches
to Word Semantics, 38-74. De Gruyter.

Lasersohn, Peter. 2021. Common nouns as modally non-rigid restricted variables.
Linguistics and Philosophy 44(2). 363—424. doi:10.1007/s10988-019-09293-4.

Lewis, David. 1975. Adverbs of quantification. In Edward Keenan (ed.), Formal Se-
mantics of Natural Language, vol. 178, 3—15. Cambridge: Cambridge University
Press.

Muskens, Reinhard. 1996. Combining Montague semantics and discourse represen-
tation. Linguistics and Philosophy 19(2). 143—186. doi:10.1007/BF00635836.

Nouwen, Rick. 2007. On appositives and dynamic binding. Research on language
and computation 5. 87-102. doi:10.1007/s11168-006-9019-6.

Pietroski, Paul M. 2005. Events and Semantic Architecture. Oxford: Oxford
University Press.

Schubert, Lenhart K. & Francis Jeffry Pelletier. 1989. Generically speaking, or,
using discourse representation theory to interpret generics. In Properties, Types
and Meaning, vol. 2 Studies in Linguistics and Philosophy, 193-268. Springer.

Wittenburg, Kent. 1987. Extraposition from NP as Anaphora. In Geoffrey J.
Huck & Almerindo E. Ojeda (eds.), Discontinuous Constituency (Syntax &
Semantics 20), 427-445. New York: Academic Press.

Anand Abraham

335 Portola Plaza

3125 Campbell Hall

Los Angeles, CA 90095-1543
aabr@ucla.edu

369

https://doi.org/10.1007/s11049-003-1838-7
https://doi.org/10.1007/s10988-019-09293-4
https://doi.org/10.1007/BF00635836
https://doi.org/10.1007/s11168-006-9019-6
mailto:aabr@ucla.edu

