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1 Introduction 
Native speakers are sensitive to the phonotactic properties of their language, distinguishing nonce 

words with attested phonotactic structures from nonce words with unattested structures. Sensitivity to 
phonotactics has been demonstrated for restrictions on sequences of segments, such as syllable onsets in 
English (Scholes 1966, Berent et al. 2007, Albright 2009, Daland et al. 2011), as well as for non-local 
cooccurrence restrictions, as in Semitic and Quechua (Berent and Shimron 1997, Frisch and Zawaydeh 
2001, Rose and King 2007, Gallagher 2013). Among attested structures, high frequency structures are 
further distinguished from low frequency ones. Such phonotactic frequency effects have been demonstrated 
in implicit as well as explicit tasks, in both adults and infants (Jusczyk et al. 1994, Vitevitch et al. 1997, 
Bailey and Hahn 2001).  

In addition to showing sensitivity to attestation and frequency of phonotactic structures, speakers also 
distinguish among different unattested structures, which all have a frequency of 0. English speakers, for 
example, prefer unattested onset clusters that share many features with attested onsets to those that have 
fewer or no features in common with attested onsets. For example, [sɹ] and [vk] are both unattested syllable 
onsets, but nonce words with the onset [sɹ], which shares most of its features with attested onsets such as 
[sl] and [ʃɹ], are rated as more acceptable than nonce words with the onset [vk], which is less similar to 
attested onsets (Scholes 1966, Daland et al. 2011). Likewise, Hebrew speakers judge a nonce root that 
starts with two identical, non-native consonants, such as [θ-θ], as less acceptable than an analogous root 
with non-identical consonants (e.g. [θ-k]), even though both sequences have a frequency of 0 in Hebrew 
(Berent et al. 2002). These results suggest that speakers generalize over attested structures and apply these 
generalizations to make distinctions among unattested ones. In order to capture speakers’ ability to 
generalize phonotactic knowledge to unattested sequences, models of phonotactic learning have recently 
begun to go beyond the simple probability of individual structures and represent generalizations over 
classes of structures (Hayes and Wilson 2008, Albright 2009, Adriaans and Kager 2010, Berent et al. 
2012).  

While adult speakers clearly learn and use these generalizations, the process by which they are 
acquired is not well understood. Existing models of phonotactic learning can be classified into two types 
with respect to the assumptions they make about the order of acquisition of segment-specific knowledge 
and broader generalizations. In one class of models, which we will refer to as specific-before-general 
models, learners first acquire knowledge about specific segment sequences. Once the learners have noticed 
the commonalities among the sequences, they form a generalization that (potentially) encompasses some 
unattested structures in addition to the attested structures that gave rise to the generalization. For example, 
when acquiring the phonotactics of English, learners must first learn that English syllables can start with [b] 
and that they can start with [g] before they can make the generalization that English syllables can start with 
a voiced stop. This generalization can in turn apply to [d], regardless of whether the learner has seen any 
instances of syllable initial [d]. The Minimal Generalization Learner (Albright and Hayes 2003, Albright 
2009) and StaGe (Adriaans and Kager 2010) both fall into this category. In the second class of models, the 
simultaneous models, generalization is not assumed to be a temporal process. The existence of a [b]-initial 
syllable in the input can support both a segment-specific statement, namely that syllables can start with [b], 
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and the wider generalization that syllables can start with a voiced stop. This class of models includes 
Maximum Entropy models (Hayes and Wilson 2008, Pater and Moreton 2012). 

This paper reports on an artificial grammar learning experiment designed to provide empirical 
evidence for choosing between these two classes of models. Our participants learned an artificial language 
that had both segment-specific phonotactic patterns and a general pattern that applied to a class of 
segments. All participants were exposed to the same patterns, but the amount of exposure to the language 
was varied across participants. To anticipate our results, all groups of participants learned the 
generalization and extended it to unseen items, even with minimal exposure. By contrast, participants were 
only able to identify individual segment patterns with more exposure. This pattern casts doubt on the 
specific-before-general assumption: instead of tracking individual structures and then generalizing over 
those structures, our participants entertained broad generalizations at least as early as specific ones. 

2 Experiment 1: Learning an identity generalization 
We constructed a language in which all of the words were of the form C1V1C2V2, e.g., kesa. This 

language had two types of phonotactic patterns. Some of the patterns, which we refer to as arbitrary 
patterns, applied to specific segment sequences. For instance, one such pattern would be “C1 = k, C2 = s”. 
In addition to these arbitrary patterns, the language included a general pattern that applied to multiple 
segment sequences, specifically “C1 = C2”. We presented this language to five groups of participants, who 
received varying degrees of exposure to the language. 

To test participants’ learning of the specific and general patterns in the training data, we presented 
them with new words that had either C1-C2 pairs that were seen in training or new C1-C2 pairs, and asked 
them to judge whether the testing words could belong to the language they had learned. Half of the new 
C1-C2 pairs in testing had identical consonants and half had non-identical, resulting in a crossed design that 
allowed us to test for the independent contribution of the broad and specific generalizations. If participants 
learned the broad generalization that identical consonant pairs are particularly common in the language, 
they should prefer items with identical consonant pairs to items with non-identical consonants. If 
participants learned the segment-specific C1-C2 combinations, they should prefer items with attested C1-C2 
pairs to items with unattested ones. Finally, if participants learned both the broad and specific 
generalizations, they should prefer words with attested pairs to unattested pairs, and, at least among 
unattested pairs, should prefer identical to non-identical pairs. 

With regards to the main question of interest, the effect of amount of exposure on learning, there are 
three possible patterns of results. First, participants may show evidence of learning the arbitrary patterns 
with a small amount of exposure and only start showing evidence of learning the broad pattern with more 
exposure. This outcome would be straightforwardly consistent with specific-before-general models. 
Second, participants may show evidence of learning the broad pattern before they show evidence of 
learning the arbitrary patterns, which would favor the simultaneous models over the specific-before-general 
ones. Finally, participants may start showing evidence of having learned both types of patterns at the same 
time. This result would be compatible with both types of models. 

 
2.1  Methods 2.1.1 Materials All words in the experiment were of the form C1V1C2V2, e.g., kesa. 
The training words had one of 8 different C1-C2 pairs, 4 of which were identical and 4 of which were not 
(see Table 1). The testing words had one of 16 C1-C2 pairs, 8 containing the consonant pairs heard in 
training, and 8 containing new consonant pairs. C1 and C2 in the novel consonant pairs had always been 
heard in training, in both initial and medial position, but the C1-C2 combination had not been heard. A total 
of 12 unique words were constructed for each consonant pair, by crossing the pair with all non-identical 
combinations of [a e i u] in V1-V2; e.g., for [p-p], the words constructed were pipa, pipe, pupa and so on. 

The words were recorded by a female native American English speaker, with stress on the initial 
syllable. The recordings were made at a sampling rate of 44.1 KHz in a sound-attenuated booth on a 
Marantz PMD-660 solid state recorder using a head-mounted Audio Technica ATM75 microphone. 

 
2.1.2 Procedure  The experiment was run using Experigen, a program for running online experiments 
(Becker & Levine 2010). The instructions were as follows:  

 
“You are going to listen to some words of a made-up language. You do not need to 
memorize the words, but you should repeat each word to yourself after listening to it. 
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After hearing several words from the language, you will be presented with some new 
words and asked whether they sound like they could belong to the language you were 
listening to.” 

 
TRAINING TESTING 

 attested in training unattested in training 
Identical identical identical 

p-p 
ʃ-ʃ 
g-g 
n-n 

pipa 
ʃuʃe 
gagu 
nuni 

p-p 
ʃ-ʃ 
g-g 
n-n 

papu 
ʃiʃe 

guge 
nenu 

k-k 
s-s 

dʒ-dʒ 
m-m 

keku 
sasi 

dʒidʒe 
mamu 

arbitrary arbitrary arbitrary 
k-s 

m-dʒ 
dʒ-k 
s-m 

kesa 
midʒe 
dʒaku 
semu 

k-s 
m-dʒ 
dʒ-k 
s-m 

kusa 
midʒa 
dʒaki 
sami 

p-n 
n-g 
g-ʃ 
ʃ-p 

pina 
nage 
gaʃe 
ʃipu 

Table 1:  All consonant pairs used in training and testing for Experiment 1, with randomly selected example 
tokens. 
 

In each training trial, a “play” button appeared in the browser window. When the participant clicked “play”, 
a “continue” button appeared. The participant then clicked “continue” to move on to the next trial. Once the 
training period was completed, the following instructions screen was displayed: “Now you will be 
presented with new words and you must decide if they sound like they could belong to the language that 
you have been listening to.” During testing, participants again pressed “play” to listen to the word. After 
they listened to the word, the question “Does this sound like it could be a word of the language you were 
listening to?” appeared, along with “yes” and “no” buttons. 

In training, participants were assigned to one of five exposure groups. Depending on their group, 
participants were presented auditorily with 1, 2, 4, 8 or 16 words with each of the 8 training consonant pairs 
(in total 8, 16, 32, 64 and 128 training words, respectively). The list of words was constructed in blocks, 
such that each consecutive block of 8 words had exactly one word with each consonant pair; however, 
participants did not receive any indication of the structure of the lists. The order of consonant pairs within 
each block and the specific vowel pattern used with each consonant pair was varied across participants.  

In testing, participants of all exposure groups were presented with 16 testing words, one word with 
each consonant pair (see Table 1). The specific word representing each consonant pair again varied across 
participants, and so did the order of presentation of the words, with the constraint that each block of four 
consecutive words had exactly one word of each condition (attested identical, unattested identical, attested 
arbitrary, unattested arbitrary). With the exception of the 16 exposures group, a participant never saw the 
same word twice; for example, a participant in the 2 exposures group might hear pipa and papu in training, 
and pepi in testing. The task could therefore not be performed by memorizing the individual words seen in 
training: participants could only distinguish the legal consonant pairs from the illegal ones by extracting the 
phonotactic patterns over the consonants. Since there were only 12 words with each consonant pair, 
training tokens needed to be repeated in the 16 exposures condition. 

 
2.1.3  Participants Participants were recruited via Amazon Mechanical Turk (www.mturk.com), and 
were paid $0.65 for completing the experiment. The experiment took between 2 and 10 minutes, depending 
on the number of training trials. Participants were told that they needed to be native speakers of English to 
complete the experiment, and were asked in a short demographic survey at the end of the experiment what 
their native language was. Participants were limited to those with IP addresses within the United States. 
 
2.1.4 Statistical analysis Logistic mixed effects models (LMEM) were fit to the participants’ responses 
(“yes” or “no”) using the lme4 package in R (Bates et al. 2013). We fit a separate model for each exposure 
group. Contrast coding was used for both consonant pair type (with identical consonants coded as 1 and 
non-identical as -1) and attestedness (attested: 1, unattested: -1). The models had a maximal random effect 
structure: for subjects, random intercepts and random slopes for attestedness, identity and their interaction; 
for consonant pairs, only intercepts. We additionally fit a larger model that included exposure group as a 
factor. In this larger model, the random effect structure for subjects was identical; for consonant pairs, we 
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added an exposure group random slope. We calculated p-values in two ways: using the Wald statistic (i.e. 
assuming that the distribution of regression coefficients under the null hypothesis is normal), and using the 
chi-square approximation to likelihood ratio tests in a stepwise regression (similar to a Type I ANOVA), 
with the predictors entered in the following order: attestedness, consonant pair type, interaction (the order 
in which the variables are entered should have a negligible effect because our design was orthogonal). The 
two types of p-values converged on the same qualitative results; in the text we report the p-values derived 
from the Wald test (except where noted). 
 
2.2 Results  Figure 1 shows the mean endorsement rates (proportion of the times that participants judged 
that the test word belonged to the language they had learned), for the four conditions in each of the five 
participant groups. We first present the results of LMEMs fitted to each of the five exposure conditions 
separately (see Figure 2) and then discuss the large LMEM fit to the entire data. 

 

 
 
Figure 1: Proportion of “yes” responses in Experiment 1 to the four types of testing items (identical 
attested = solid dark line, identical unattested = dashed dark line, arbitrary attested = solid light line, arbitrary 
unattested = dashed light line) in five conditions (1, 2, 4, 8 or 16 exposures to each of the 8 C1-C2 pairs in 
training). Error bars represent bootstrapped 95% confidence intervals. 
 
Participants in the 1 exposure group did not show evidence of distinguishing between attested and 

unattested items (β = -0.02, p = 0.79), preferred test items with identical consonants to items with 
nonidentical consonants, indicating that participants learned the identity generalization. The identity 
preference didn’t differ significantly between the attested and unattested pairs (β = 0.07, p = 0.32 for the 
interaction term between attestedness and identity). 

As the number of exposures to the items increased, participants started to favor attested items. Even the 
participants who saw only 2 words with each consonant pair showed a reliable preference for the attested 
items (β = 0.39, p < 0.001). In other words, with two or more exposures to each item, participants showed 
evidence of keeping track of the individual C1-C2 pairs presented in training. The effect of identity on 
endorsement rate persisted in the 2 exposure condition, and again did not differ significantly between 
attested and unattested items, though there was a numerically larger effect of identity for attested items 
(interaction: pz = 0.1, 𝑝!! = 0.18). Since the effects of attestedness and identity had similar magnitude, 
unattested identical items and attested arbitrary items were rated similarly. The pattern remained 
statistically similar in the 4 exposure condition, though the (still non-significant) interaction switches 
direction, such that identity starts to play a larger role in unattested items than in attested items. 

The preference for attested consonant pairs increased steadily, becoming twice as strong in the 16 
exposures condition as in the 2 exposures condition (16 exposures: β = 0.77, p < 0.001). Also by the 16 
exposures condition, identity stopped having an effect on attested items: once participants have learned the 
attested consonant pairs, they no longer rely on identity to judge their well-formedness. The preference for 
identical pairs persists in the unattested consonant pairs, driving a main effect of identity; in the 8 
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exposures condition, this main effect is offset by a significant interaction, which confirms that it is specific 
to the unattested pairs (β = -0.27, p = 0.006). However, the unusually large effect of identity in the 8 
exposures condition appears to be driven by a potentially spurious reduction in the endorsement rate of the 
unattested arbitrary items; in the 16 exposures condition, the magnitude of the identity effect returns to its 
level from the 4 exposure condition, and the interaction is no longer significant (though still trends in the 
same direction). 

 
Figure 2: Logistic MEM coefficients for the models fit to each exposure group separately. Error bars indicate 
two standard errors of the estimates. 
 
We additionally fitted LMEMs to the entire data set, with the number of exposures as a predictor in the 

regression model. We fitted two models, coding the number of exposures in two different ways: as a 
categorical variable with 5 levels, and as a linear trend, using a logarithmic transformation (i.e., the 
exposure groups 1, 2, 4, 8 and 16 were transformed to 1, 2, 3, 4 and 5 respectively). All three main effects  
(consonant pair type, attestedness and number of exposures) were highly significant in both models. The 
interaction between attestedness and number of exposures was also significant, reflecting the participants' 
consistent improvement in discriminating between attested and unattested items (p < 0.001).  

The overall interaction between attestedness and type was not significant in either model. The 
interaction between number of exposures and type was not significant either: the identity generalization is 
learned very quickly, and there is no improvement with additional exposure. However, the interpretation of 
this term is complicated by a marginally significant three-way interaction between attestedness, type and 
number of exposures (p = 0.08 in the categorical model, p = 0.05 in the linear trend model). This pattern 
reflects the reversal of the trend of the type-by-attestedness interaction in the group-by-group models: it 
starts out positive, such that identical attested items are learned slightly better than non-identical attested 
items (1 and 2 exposures), and gradually becomes negative (8 and 16 exposures), such that identity stops 
conferring an advantage for attested items and comes into play only when the participants judge unattested 
items. 

 
2.3  Discussion  Participants showed evidence of learning the broad generalization over identical 
consonant pairs before they showed evidence of learning the individual attested C1-C2 pairs. After a single 
exposure to each of 8 possible consonant pairs, 4 of which were pairs of identical consonants, participants 
showed a preference for novel words with identical consonants. This preference held regardless of whether 
or not this pair of identical consonants was presented in training. Participants did not start showing 
evidence of learning individual consonant pairs until they had 2 exposures to each type. This pattern of 
results suggests that general patterns can be learned before individual instances of these patterns, contra the 
specific-before-general hypothesis. 

Average endorsement rates were typically above 60%, indicating that participants did not strongly 
object to any of the test items. This is not particularly surprising given that all test items followed the 
template C1V1C2V2, which was shared by all training items, and were made up of the same consonants and 
vowels as the training items. Thus, all of the testing items received some support from the training data. 
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Items with novel syllable structures (e.g., [kes]) or novel segments (e.g., [lumi]) would likely be endorsed 
at a lower rate. 

3 Experiment 2: Ruling out a pre-existing bias 
We interpreted our participants’ preference for identical items after one exposure in Experiment 1 as 

reflecting the learning of a generalization. Before being confident in this interpretation, however, we must 
rule out the possibility that these results are due to prior bias in favor of words with identical consonants. 
To confirm that the preference for identical consonant pairs after one exposure in Experiment 1 was due to 
training, we ran Experiment 2 as a control. In Experiment 2, participants were exposed to 8 arbitrary (i.e., 
non-identical) C1-C2 pairs, and then tested on the same unattested items as in Experiment 1 (including the 
identical ones). If participants still show a preference for identical over non-identical items, despite not 
having seen any identical items in training, this will be evidence that the preference is due to some prior 
bias in favor of identical items. If, however, participants show no identity preference, this will support the 
interpretation of the identity preference in Experiment 1 as a result of learning. 

 
3.1  Methods  3.1.1  Materials  All words had the form C1V1C2V2, as in Experiment 1. As in the 1 
exposure condition of Experiment 1, there were 8 training words and 16 test words. All training words had 
non-identical consonants (see Table 2). Vowel patterns were chosen at random, with no vowel pattern 
repeated across training and testing words. As in Experiment 1, half of the test words were attested in 
training and half weren’t. All of the attested words in testing had non-identical consonants, resulting in a 
necessary mismatch with Experiment 1. The unattested items in testing had the same consonant pairs as in 
Experiment 1, half identical and half non-identical (four of each).  

The support that identical and non-identical test items could receive from accidental patterns in the 
training set was matched as follows. Each of the eight segments appeared once in initial position and once 
in medial position. The identical and non-identical unattested test items therefore received equal support 
from the positional frequency of the individual segments, as in Experiment 1. In addition, the two types of 
unattested test items were matched for the amount of natural class based support they received from 
consonant cooccurences in the training items (voicing, place of articulation and manner of articulation). For 
example, the test item s-s receives support from two voiceless-voiceless pairs (p-s and k-p), and there are 
no fricative-fricative pairs or alveolar-alveolar pairs in the training data, so its total natural class-based 
cooccurence support score is 2. It is matched with g-ʃ, which also receives natural-class based support from 
2 attested pairs, the single stop-fricative pair p-s and the single voiced-voiceless pair g-k; there are no velar-
palatal pairs in the training data. 

 
TRAINING TESTING 

 attested in training unattested in training 
ʃ-dʒ  ʃadʒi ʃ-dʒ ʃidʒe identical 
m-n  
s-g 
p-s 
g-k 

mena 
sagu 
pesi 
giku 

m-n 
s-g 
p-s 
g-k 

muni 
sage 
pisu 
guka 

k-k 
s-s 

dʒ-dʒ 
m-m 

keku 
sasi 

dʒidʒe 
mamu 

k-p  kape k-p kepi arbitrary 
n-ʃ 
dʒ-m 

nuʃa 
dʒemu 

n-ʃ 
dʒ-m 

nuʃa 
dʒamu 

p-n 
n-g 
g-ʃ 
ʃ -p 

pina 
nage 
gaʃe 
ʃipu 

Table 2:  All consonant pairs used in training and testing for Experiment 2, with randomly selected example 
tokens. 

 
3.1.2  Participants  Participants were recruited in the same way as in Experiment 1. There were 70 
participants. 
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3.1.3  Procedure  The procedure was identical to Experiment 1. 
 
3.1.4  Statistical analysis  A logistic mixed-effects model was fit to the results, with a three-level factor 
of consonant type (attested, unattested identical, unattested arbitrary) as a fixed effect and a by-subject 
random effect, as well as by-subject and by-item random intercepts. All p-values are derived from the Wald 
test. 
 
3.2  Results  The results of Experiment 2 are shown in Figure 3. Contrary to the predictions of the bias 
hypothesis, participants did not show a preference for identical unattested items; if anything, there was a 
slight preference for non-identical unattested items. Incidentally, there was a striking difference between 
the attested (non-identical) items and unattested items of either type, however: unlike in the 1-exposure 
condition of Experiment 1, participants were much more likely to endorse attested than unattested items. 
The effect of type was highly significant (p < 0.001). Planned comparisons showed that this effect was 
entirely due to the difference between attested and unattested items: the difference between the two types of 
unattested items was far from being significant (p = 0.55). 
 

 
Figure 3: Proportion of “yes” responses in Experiment 2 to the three types of testing items (attested = dark 
triangle, arbitrary unattested = dark circle, identical unattested = light circle), with one exposure to each 
consonant pair in training. Error bars represent bootstrapped 95% confidence intervals. 

 
3.3  Discussion  When participants were not exposed to identical consonant pairs in Experiment 2, they 
did not show any preference for novel items with identical consonants. The results therefore support 
interpreting the preference for identical items after one exposure in Experiment 1 as being due to learning 
during the training portion of the experiment. Thus, the interpretation of the main result of Experiment 1 
remains unchanged: participants show evidence of learning the broad generalization about identical 
consonant pairs before learning narrow generalizations about the specific attested consonant pairs. 

The results of Experiment 2 reveal an additional interesting effect. Participants in Experiment 2 
showed a strong preference for attested over unattested consonant pairs after just one exposure, unlike 
participants in Experiment 1. While we cannot make firm claims about the source of this difference, one 
possibility is that the presence of a broad generalization interferes with the learning of narrower 
generalizations. In Experiment 1, the presence of the identity generalization prevented learners from 
attending sufficiently to the narrower generalizations with small amounts of training, while in Experiment 2 
learners were free to focus on the specific, attested C1-C2 pairs. 

At first blush, the lack of a preference for identical items in Experiment 2 compared to Experiment 1 
could still be consistent with a pre-existing bias to give “yes” responses to identical items: the absence of 
identical consonant pairs in the training data could have been taken as evidence for the generalization that 
pairs of identical consonants are underattested, offsetting a pre-existing bias in favor of identical 
consonants. However, this alternative explanation for the results of Experiment 2 becomes less plausible if 
we consider the radically different amount of support for the generalization that the training data provide in 
each of the experiments. With an inventory of 8 consonants, a sample of 8 words with all non-identical 
pairs is not a particularly surprising one: 56 out of the possible 64 consonant pairs are non-identical. The 
expected number of non-identical pairs in a sample of 8 is therefore 7, and an observed sample of 8 non-
identical items yields an observed-over-expected ratio (O/E) of 8/7. In Experiment 1, on the other hand, the 
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participants received 4 identical pairs instead of the expected 1, for an O/E of 4/1. In other words, the 
evidence for the overattestation of identical pairs in Experiment 1 is much stronger than the evidence for 
their underattestation in Experiment 2. It is therefore implausible that the preference for identical items 
after one exposure in Experiment 1 was due to bias, and at the same time that the lack of preference for 
identical items in Experiment 2 was due to learning that offset the bias. 

4 General discussion 
We found that participants show evidence of learning a broad generalization (pairs of identical 

consonants are attested) before learning more narrow generalizations (which individual segmental pairs are 
present in the training data), calling into question the specific-before-general assumption. Our results do not 
present direct evidence that broad generalizations are explicitly favored over more narrow generalizations 
in learning. In any sample size, the amount of evidence for the broad and narrow generalizations differ. 
Broad generalizations are typically supported by a greater number of types than narrow generalizations, so 
it is expected that learners would learn them faster, all other things being equal. Specifically, after a single 
exposure to each of the 8 consonant pairs, the learner has seen 4 tokens that support the broad 
generalization about identical consonants, and only one training token that supports the narrow [k-s] 
generalization. Even assuming that the learner is not biased towards either general or specific patterns, the 
identity pattern would be learned first, as long as both general and specific hypotheses are considered 
simultaneously. 

 
4.1  Relation to previous empirical work  Our results help explain some divergent findings from the 
artificial grammar learning literature. In a recent study with 6-month-old infants (Cristia and Peperkamp 
2012), participants were exposed to C1V1C2V2 words with three different consonants in C1 (18 words with 
each onset). All three consonants had the same voicing (either all voiced or all voiceless). In testing, the 
infants listened to words with 1) attested onsets with the same voicing as in training, 2) unattested onsets 
with the same voicing as in training, 3) unattested onsets with different voicing (though no infant heard all 
three conditions). The infants looked longer to trials of condition 2 than condition 3, indicating that they 
learned the voicing generalization; however, they did not distinguish condition 1 from condition 2, 
suggesting that they did not store the individual consonants. This contrasts with previous adult studies in 
which participants did not generalize at all beyond the individual segments they saw in training 
(Peperkamp, Skoruppa and Dupoux 2006; Peperkamp and Dupoux 2007). The authors concluded that 
infants and adults learn phonotactics differently: infants encode class-wide patterns, whereas adults learn 
individual segments. 

The evidence for a qualitative difference between infants and adults is mixed, however. On the one 
hand, 9-month-old infants trained on unsegmented speech from an artificial language successfully learned a 
phonotactic pattern whereby syllable onsets must be voiced the stops /b d g/, but failed to learn a pattern 
that did not lend itself to a natural-class based grouping, e.g. /b t g/ (Saffran and Thiessen 2003). This result 
supports Cristia and Pepperkamp’s hypothesis that infants are particularly good at learning phonotactics 
over natural classes. On the other hand, when trained on individual segmented syllables, slightly older 
infants (10.5 months old) successfully learned an arbitrary phonotactic pattern (Chambers, Onishi and 
Fisher 2011).  

Further undermining the dichotomy between adults and infants, adults do show generalization to novel 
segments in some experiments, though they typically prefer segments seen in training to unseen but 
generalization-conforming segments (Finely and Badecker 2009, Cristia et al. 2013, Gallagher 2013). In 
one study (Cristia et al. 2013), participants were exposed to words of the form C1V1C2V2, where C1 was 
one of five consonants drawn from a subset of some phonological natural class (for example, /d g v z ʒ/, a 
subset of the class of voiced obstruents). In the relevant conditions of the test phase, participants were 
requested to give frequency judgments on novel words in which C1 was either 1) one of the attested onsets, 
2) an unattested onset from the same natural class (e.g., /b/ in the case of voiced obstruents), or 3) an 
unattested onset that didn’t belong to the natural class (e.g., /p/). Participants rated the attested onsets as 
most frequent, the generalization-conforming unattested onsets as less frequent, and non-conforming 
unattested onsets as the least frequent. This pattern, which is similar to the pattern we saw in the higher 
exposure conditions, is the pattern predicted by most extant learning models. 

Abstracting away from the specifics of the studies surveyed above, the results of Experiment 1 suggest 
a potential way to reconcile these conflicting findings. After a single exposure to each consonant pair, adult 
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participants in our experiment learned the generalization that identical consonant pairs are preferrable to 
non-identical pairs, but failed to learn the individual attested consonant pairs. In other words, when they 
received a small amount of exposure, adults showed the same performance as the 6-month-old infants in 
Cristia and Peperkamp’s (2012) study. In the 8 and 16 exposure conditions of Experiment 1, on the other 
hand, our participants’ performance mirrored the results of Cristia et al.’s (2013) adult study: attested 
consonants pairs were rated highest, unattested generalization-conforming items rated lower, and unattested 
non-conforming items rated lowest.  

If each type in the language is experienced with equal frequency, then, general patterns that receive 
support from multiple types (e.g., “two identical consonants”), are learned faster than patterns that only 
receive support from a single type (e.g., s-m). This raises the possibility that the difference between infants 
and adults may not be a qualitative difference in learning strategies or biases, but rather a quantitative 
difference in the amount of evidence each group receives for the pattern being learned. Adults often receive 
considerably more exposure to the artificial language than infants, due to the difficulty maintining the 
infants’ attention for extended periods of time. For example, adult participants in Cristia et al. (2013) were 
exposed to 160 training words, whereas infants in Cristia and Peperkamp (2012) were only exposed to 54 
words. Further work is required to establish how much of the differences between infant and adult studies 
can be explained by the differences in the amount of exposure that they receive. 

 
4.2  Implications for specific-before-general models  Simultaneous models assume that both general and 
specific patterns are entertained as potential hypotheses from the outset of the learning process (Hayes and 
Wilson 2008, Pater and Moreton 2012). These models can straightforwardly account for a scenario in 
which participants fail to learn a specific pattern but manage to learn a general one, as in the 1- exposure 
condition of Experiment 1 and in some of the infant studies mentioned above. Specific-before-general 
models like MGL (Abright 2009) and StaGe (Adriaans and Kager 2010), on the other hand, predict that 
learners need to first learn specific instances of a pattern before they can form the more general pattern. 

In a sense, the result of the 1-exposure condition in Experiment 1 is a null result: it shows that the 
general pattern was learned better than the specific ones, but does not prove conclusively that participants 
didn’t learn the specific patterns. In principle, these results could be compatible with a specific-before-
general model that learned both a specific and a general pattern, but assigns a much higher weight to the 
general pattern. The effect of the specific patterns could then be too small to detect in our experiment, even 
though both types of patterns have been learned (i.e., represented). While this is a theoretical possibility, 
the actual implementations of the MGL and StaGe predict exactly the opposite: when both a specific and a 
general pattern apply to a test string, the specific pattern typically overrides the general ones. Specifically, 
MGL assumes that each pattern that applies to the string being evaluated contributes a phonotactic 
probability estimate. The estimate contributed by each applicable pattern is calculated by dividing the 
relative frequency of the pattern by the number of types that the pattern could apply to. The overall estimate 
for a particular string is then obtained by taking the highest estimate assigned by all applicable patterns. 
StaGe, which is based on Optimality Theory, uses a similar mechanism to determine the rank of the 
relevant constraint. Again, only the highest ranked constraint has an effect. 

To illustrate this procedure for MGL, suppose that the model has been trained on the training set of 
Experiment 1 and has acquired both the specific patterns (p-p, k-s, etc.) and the general pattern C1 = C2. 
The probability estimate for the generalization C1 = C2 will be the relative frequency of identical pairs in 
the training data divided by the number of possible identical pairs. The relative frequency of identical pairs 
is 1/2, and there are 8 possible identical pairs; the resulting probability estimate is therefore (1/2)/8 = 1/16. 
A specific pattern such as p-p only applies to one type, which occurs once every 8 words, so its probability 
estimate would be (1/8)/1 = 1/8, which is higher than the estimate for the more general pattern. The 
model’s well-formedness scores for novel words in Experiment 1 would be as follows: 

 
(1) a. Attested  identical (pipu):  1/8  (both p-p and C1 = C2 apply; p-p has a higher estimate) 

b. Attested arbitrary (kisu):  1/8 (only k-s applies) 
c. Unattested identical (keku): 1/16  (only C1 = C2 applies) 
d. Unattested arbitrary (pina): 0  (no pattern applies1) 

                                                             
1 This is a simplification, since pina conforms to many generalizations about the segments, natural classes and prosodic 
structure of the language. It also conforms to the very general cooccurrence pattern Ci-Cj (“any two consonants”), 
which has a relative frequency of 1 but applies to all 64 possible types, so that it assigns a probability estimate of 1/64.  
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The estimates in (1) correctly predict the qualitative pattern of results of the 16 exposures group in 
Experiment 1: attested items are rated highest; unattested generalization-conforming items are rated lower; 
and unattested arbitrary items are rated lowest. Interestingly, MGL also correctly predicts that the rating of 
attested pairs does not depend on whether they conform to the generalization or not, a pattern not predicted 
by Maximum Entropy models. 

While MGL successfully predicts the results of the 16 exposures condition, it does not explain 
participants’ behavior in the 1 exposure group: it predicts a preference for specific patterns regardless of the 
number of tokens supporting each type of pattern. However, the model can be modified to take the number 
of tokens into account by reintroducing a component proposed in a previous version of the model (Albright 
and Hayes 2003). Specifically, phonotactic probability can be estimated using the lower bound of the 
confidence interval (CI) for the relative frequency instead of the relative frequency itself. For example, the 
relative frequency of a consonant pair is the same whether it was seen 2 out of 16 times or 100 out of 800 
times (0.125 in both cases), yet the CI-based estimates would be very different between the two cases: the 
95% CI is (0.03, 0.36) in the first case, leading to an estimate of 0.03, and (0.1, 0.15) in the second, leading 
to an estimate of 0.1. This procedure has a similar effect as regularization in regression models (used, for 
example, by Hayes and Wilson 2008): probability estimates are pulled towards zero if the data don’t 
provide strong enough support for them. 

We ran simulations of the modified version of MGL in which probability estimates contributed by a 
generalization are adjusted depending on the number of tokens the generalization is based on. Adjusting the 
model’s probability estimates based on the amount of evidence may in some cases allow the general 
identity pattern to be weighted higher than the specific patterns, despite the fact that the identity pattern has 
a lower unadjusted estimate than the specific ones.  For instance, the unadjusted estimate for a specific 
pattern may be 0.125, but could be adjusted to 0.01 if it is based on just one token. By contrast, the estimate 
for the general pattern, which has a lower unadjusted value (0.0625) but is based on more tokens, would be 
adjusted less dramatically, say to 0.05. Figure 4 shows the result of simulations of an MGL phonotactic 
learner exposed to the training data from Experiment 1, with different CI sizes. When the CI size α is small 
(e.g., α = 25%), the estimate is close to the relative frequency even after one exposure. When it is large 
(e.g., α = 95%), the estimates are pulled heavily towards zero, and a greater amount of types is required for 
the relative frequency pattern to have an effect. When α is set to 75%, the simulation results match the 
qualitative pattern of results from Experiment 1. 

 
Figure 4: Phonotactic probability estimates from a modified version of the MGL phonotactic learner 
(Albright 2009) in which a probability estimate is replaced by the lower bound of a confidence interval 
around the estimate, for four sizes of the confidence interval (25%, 50%, 75% and 95%). 
 
To summarize, it is possible to modify specific-before-general models to simulate the results of 

Experiment 1, based on the assumption that participants do learn specific patterns immediately and use 
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them to form more general patterns, but don’t show evidence of having learned the specific patterns until 
they’ve seen multiple tokens instantiating them. In other words, we need to attribute knowledge to the 
learners before they show evidence of applying it, which may be theoretically undesirable. Furthermore, the 
fact that different values of α can lead the models to predict very different patterns of results raises the 
concern that this modified model may not be restrictive enough. Albright and Hayes (2003) mention that 
their model achieved the best fit to the English past tense data with α = 55%. In our data set, however, α 
needs to be closer to 75%. It would be preferable to have a principled way to predict what α should be for a 
given data set. 

An issue worth mentioning is the way in which identity generalizations are represented in the model. 
MGL as described in Albright (2009) is a model of natural class based generalization. After the model has 
learned the patterns p-l and b-l (or, in simplified phonological feature notation, [lab, –voice]-l and 
[lab, +voice]-l) it notices the natural classes that these patterns have in common, abstracts over the 
differences between them and induces the pattern [lab]-l. This generalization procedure does not 
straightforwardly extend to identity generalizations. For instance, p-p and b-b would be represented as 
[lab, –voice][lab, –voice] and [lab, +voice][lab, +voice] respectively; the only generalization that MGL 
would extract from these two pairs of feature bundles is [lab][lab], a pattern that doesn’t encode the identity 
between the two consonants, and therefore incorrectly applies to p-b as well.  

To enable MGL to learn identity patterns, we coded each of the identical input pairs twice, once as a 
simple pair of feature bundles, and once as a single feature bundle followed by a variable X. The input p-p, 
for example, was coded both as the simple representation [lab, –voice][lab, –voice] and as the variable-
based representation [lab, –voice]-X (Colavin et al. 2010, Gallagher 2013). Given this double 
representation of each identical input, p-p and b-b can now give rise to two generalizations: [lab][lab], 
which covers p-b, b-b, b-p and p-p, and [lab]-X, which only covers p-p and b-b. Some machinery is needed 
to deal with identity patterns in Maximum Entropy models as well, though the added complication is 
concentrated in the set of possible patterns, and does not require recoding the relationship between the 
consonants as part of the representation of the pair. Specifically, in addition to simple patterns such as 
“C1 = s, C2 = k”, the input needs to be matched against “C1 = C2” (Berent et al. 2012). 

5 Conclusion 
The experiments presented in this paper compared the timecourse of acquisition of specific and general 

phonotactic patterns. We found that the general identity pattern was acquired early on, resulting in a 
preference for identical over non-identical consonant pairs. The learning of individual consonant pairs 
proceeded more slowly. Initially, participants didn’t reliably distinguish attested from unattested consonant 
pairs. As the number of exposures increased, participants made a larger and larger distinction between 
attested and unattested pairs. The earlier acquisition of the general pattern compared to the specific patterns 
is more straightforwardly explained by simultaneous models, which can acquire both general and specific 
patterns at the same time, than by specific-before-general models. 

Experiment 2 showed that participants do not prefer identical test items if they do not encounter them 
in the training phase, confirming that participants’ preference for identical test items in Experiment 1 was 
due to the training they received and not to a pre-existing bias in favor of identical consonants. We also 
found that the individual arbitrary items were learned better in Experiment 2 than in Experiment 1, 
indicating that the presence of a broad generalization may impair the learning of specific patterns.  

Even though the relative frequency of the patterns was identical across the five exposure conditions of 
Experiment 1, participants showed qualitatively different behavior based on the amount of training data 
they saw. This sensitivity to the amount of evidence could account for differences between studies that 
showed learning of specific patterns on the one hand and studies that showed exclusive learning of a 
general pattern (particularly in infants) on the other hand. We also showed that given certain assumptions 
specific-before-general models could be modified to accommodate the pattern we found, though 
simultaneous models offer a more straightforward account of the results. In general, our results point to the 
potential of timecourse data as a tool to constrain models of phonotactic learning. 
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