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1 Introduction

Phonotactic constraints have been argued to be regular, meaning that they can be represented using
finite-state automata (Heinz, 2018); furthermore, they have been argued to occupy a even more restricted
region of the regular language class known as the subregular hierarchy (Rogers & Pullum, 2011). Our
contribution is to present a simple model of phonotactic learning from positive evidence. Our approach is
based on probabilistic finite-state automata (Vidal et al., 2005a,b). We study the model’s ability to induce local
and nonlocal phonotactics from wordlist data, both with and without formal constraints on the automaton.
In particular, we evaluate the ability of our learner to induce nonlocal phonotactic constraints from data of
Navajo and Quechua. Our work provides a framework in which different formal models of phonotactics can
be compared, and sheds light on the structural nature of phonological acquisition (Dai, 2021; Shibata & Heinz,
2019; Heinz & Rogers, 2010, 2013).

2 Background: Formal properties of phonotactics

2.1 Phonotactics and formal grammar Phonotactics is the speakers’ knowledge of legal and illegal
sound sequences in a language. In formal language theory, a language is defined as a set of strings (or words).
For example, given a segmental inventory {s, o, S}, two possible languages are A and B, as illustrated in Table
1. Those strings that belong to the set, such as {soS, sosoS} in language A, are legal, and those that do not
belong to the set, such as {*sSo, *sosS, . . .}, are illegal.

Language A Language B

Legal {soS, sosoS, . . .} {SoSoS, Sos, . . .}
Illegal {*sSo, *sosS, . . . } {*soS, *sosoS, . . . }

Grammar *sS: no sS sequence *s. . . S: no s followed by S

Table 1: Sample languages A and B

A grammar of a language is defined as a set of constraints that predicts the wellformedness of a string—
what’s legal or illegal—in that language. For example, “no adjacent sS sequence” is the grammar for language
A, and “no s can be followed by an S at any distance” the grammar for language B. The grammar for language
A can be called local because its constraints refer only to segments that are immediately adjacent to each other.
The grammar for langauge B, in contrast, is nonlocal, in the sense that the constraint that defines it refers to
two segments at any distance.

We refer to a set of languages as a class. The languages sharing the local property of grammar A form a
Strictly Local (SL) class, and those sharing the nonlocal property of grammar B are in the Strictly Piecewise
(SP) class (Heinz & Rogers, 2010; Heinz, 2018).
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group, and the Language Processing Group at UC Irvine for helpful comments. Special thanks to Maria Gouskova, Gillian
Gallagher, Seoyoung Kim for their help on the dataset.
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2.2 Formal grammars as automata A grammar can be formally encoded as an automaton that generates
or accepts the strings in the corresponding language. In the case of phonotactics and phonology, it turns out
that grammars can be modeled by Finite-state Automata (FSAs) (Karttunen, 1991; Kaplan & Kay, 1994).
For example, here is an FSA for Grammar *sS:

Figure 1: Sample FSA for Grammar *sS

A FSA consists of a set of states (in Figure 1, we have states q0, q1, and q2) which are conventionally
drawn as circles, and a set of symbols, which in phonotactics could be segments, features, or natural classes.
In the example in Figure 1, the symbols are segments. An FSA furthermore includes a set of transitions from
state to state given each symbol, which are drawn as arrows. Whether the final state is an accepting state
indicates the legality of a string. If the machine enters an accepting state indicated by a double circle, then it
is said to accept the string of symbols that it has read up to that point. If it is not in an accepting state after
reading the final symbol of the string, then that string is not accepted.

In a finite-state automaton such as in Figure 1, the set membership of a string such as soS is determined
by the following procedure. Starting in the initial state (conventionally the one labeled q0), the automaton
reads the first symbol s, and then moves to state q1; from q1, the automaton reads the second symbol o, enters
state q0; similarly, from state q0, the automaton reads the third symbol S, and moves to q0. In the example, the
machine ends in q0, which is an accepting state, so soS is a legal string. In comparison, if the processed string
is illegal, such as *sSo, after reading the first symbol s and entering state q1, the automaton reads an S, enters
and eventually stays at non-accepting state q2.

2.3 Subregular Hierarchy In the study of Formal Language Theory, the Chomsky-Schützenberger
Hierarchy (Chomsky & Schützenberger, 1963) demarcates the expressivity of formal grammars. Previous
studies have provided evidence that most attested phonological patterns belong to a very restrictive region
at the bottom of Chomsky-Schützenberger Hierarchy, known as Subregular Hierarchy (Heinz, 2018). The
Subregular Hierarchy can be defined in terms of constraints on the structure of FSAs.

For example, in a Strictly k-Local (k-SL) language, each symbol is only subject to constraints involving
itself and the immediately preceding k − 1 symbol(s). The grammar *sS defines a 2-SL language. In a
Strictly k-Piecewise (k-SP) language, each symbol depends on the presence of any preceding k− 1 symbols at
arbitrary distance; the grammar *s. . . S is an example that defines a 2-SP language. SP can capture the nonlocal
dependencies missed in a SL grammar. For a word [sipoS], in a 2-SL lnguage, [S] is only conditional on its
immediately preceding one symbol [o]; in a 2-SP language, however, [S] is conditional on any preceding 1
symbol, including [s].

3 Probabilistic approach

Taking a probabilistic approach, we conceive of phonotactic learning as the process of inducing from a set
of attested words a probability distribution p(x), for all words x ∈ Σ∗. In this view, phonotactic learning is
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successful when words that are considered phonotactically legal (whether attested or not in a particular dataset)
receive high probability and illegal words receive low probability.1

In order to incorporate the formal insights described above, we propose to parameterize the phonotactic
distribution p(x) as a Probabilistic Finite-state Automaton (PFA). As illustrated in Figure 2, a PFA augments
a finite-state automaton by associating each transition from state to state with a probability. Like a Finite-state
Automaton, a PFA has a finite set of states Q = {q0, q1, . . . , qn} and an inventory of symbols Σ. In addition, it
has an emission distribution which gives the probability of generating a symbol x ∈ Σ given state q ∈ Q,
and a transition distribution which gives the probability of transitioning from state q into new state q′ after
the emission of symbol x.

Figure 2: Sample PFA for Grammar *sS

The generation of a particular string x = x1x2 . . . xn works by starting in an initial state q0, generating
the symbol x1, transitioning into the next state q′, and so on recursively until reaching an accepting state,
where there is some nonzero probability to halt the generation process. The likelihood p(x) assigned to form x
is simply the probability that the PFA generates x. For example, in the PFA in Figure 2, the likelihood of an
illegal word sosS is 1

3 ∗ 1
2 ∗ 1

3 ∗ 0 = 0, and the likelihood of a legal word sosoS is 1
3 ∗ 1

2 ∗ 1
3 ∗ 1

2 ∗ 1
3 = 1

108 ,
which is higher than the likelihood of the illegal word.

A PFA can be parameterized in terms of linear algebra using a family of matrices. The emission matrix
(E), of shape |Q| × |Σ|, gives the probability of emitting a symbol x given a state. Each row in the matrix
represents a state, and each column represents an output symbol. Each symbol x is associated a transition
matrix Tx, of shape |Q| × |Q|, which gives the probabilities to transition into a state q′ from state q after
emitting symbol x.2 Given matrices E and T, the likelihood of a form (sequence of symbols) is found by
marginalizing over all trajectories through states; this calculation can be performed efficiently using a dynamic
programming algorithm Vidal et al. (2005b).

Probabilistic automata to generate SL and SP languages can be implemented by hard-coding transition
matrices T with certain structural constraints. For example, an automaton for a 2-SL language has transition
matrices where each state corresponds to a symbol, and the transition matrix always forces the automaton to
go into the state for symbol x after generating symbol x. In this way, the state of the machine always encodes
only the previous symbol, thus generating a 2-SL language. The construction for 2-SP languages is more
complex and involves building up the transition matrices T as a product of many smaller matrices: for details
see Dai (2021) and Dai & Futrell (2021).

Using our construction, it is also possible to train an automaton with the ability to condition the generation
of each symbol on both SP and SL factors, by taking the product of SP and SL automata (Heinz & Rogers,
2013). We refer to the language generated by such an automaton as SP + SL.

1 This is distinct from a model which reads a word and outputs a binary set-membership judgment, or a model which reads
a word and outputs a continuous acceptability value. For formal consequences of this passage to probabilistic automata,
see Icard (2020).
2 In fact any FSA, whether probabilistic or not, can be parameterized in this way. To encode a non-probabilistic FSA
such as in Figure 1, all the entries in the matrices that define the automaton would be binary-valued, indicating whether a
transition is categorically allowed or not.
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4 Learning

By parameterizing our phonotactic distribution p(x) as a PFA, we enable the use of a particularly simple
learning algorithm. Let pA(x) denote the probability assigned to form x given a particular PFA A. The key
aspect of our framework that enables simple learning is that the likelihood of a form pA(x) is a differentiable
function of the matrices E and T that define the PFA A; it is therefore straightforward to find the matrices E
and T that maximize the total likelihood assigned to a training set of attested forms using gradient descent, as
we describe below. Other methods are possible (Miller et al., 2021).

Given a training set of N attested forms {xn}Nn=1, our proposed learner finds a PFA A to maximize the
function J(A) which is the sum log likelihood assigned to the whole training set:

J (A) =

N∑
n=1

log pA (xn) . (1)

The function J(A) is called the objective function for automaton A.
An automaton to optimize this objective function can be found by gradient descent, by starting with

an initial automaton A0 with random emission and transition matrices, and then iteratively updating the
parameters of the matrices according to the following rule:

At = At−1 + η∇J(At−1),

where η is a small scalar called the ‘learning rate’, the notation At is being used here to denote the vector of
parameters that define the PFA at the t’th step of training (that is, all the numbers that populate the emission
and transition matrices), and ∇J(At−1) is the gradient of the objective function (1), that is, the vector of
derivatives with respect to each parameter of the PFA at training step t− 1.3

Gradient descent and maximum-likelihood algorithms such as ours are commonplace in phonotactic
learning; for example they feature prominently in the phonotactic learner of Hayes & Wilson (2008).
Furthermore, modern ‘deep learning’ approaches to machine learning are based almost entirely on gradient
descent algorithms (Goldberg, 2017). Our contribution is to demonstrate the utility of an extremely
straightforward gradient descent algorithm for PFA learning.

Using our method, it is possible to induce both the emission and transition matrices of a PFA, thus learning
a PFA ‘from scratch’ without any predefined constraints its structure except the number of states; we call this
an unrestricted PFA. Besides implementing such learning, we also explored the application on restricted
language classes, such as SL and SP. For learning within these classes, we hard-code the transition matrices T
to reflect the appropriate formal constraints, and we induce only the emission matrix E from data while holding
T fixed. The code of the model is available at http://github.com/hutengdai/PFA-learner.

5 Evaluation

In this section, we show two applications of our method: first we evaluate the ability of our learner to
acquire appropriate PFAs from data for toy formal languages, and then we evaluate the ability of the PFA to
model real linguistic data involving nonlocal phonotactic constraints.

We use two evaluation metrics—legal–illegal difference and heldout LL—which measure different aspects
of the performance of our learner. The legal–illegal difference measures the ability to represent a particular
constraint; the heldout LL measures general ability to predict well-formed words. Below, when we evaluate on
toy languages, we focus on the legal–illegal difference; when we come to real natural language data, we also
introduce the heldout LL evaluation metric.

5.1 Toy languages Toy languages are defined over the symbol inventory {a, b, c} plus the boundary
symbol #. As an example of 2-SL languages, we use the language characterized by the forbidden factor *ab.

3 An additional complication is that we need a way to put constraints on the matrices E and T so that the rows
in the matrices sum to one, i.e. so that they define a well-formed probability distribution. We accomplish this by
parameterizing the emission and transition matrices using underlying real-valued matrices which are transformed into
probability distributions by a softmax operation. For details see Dai & Futrell (2021).
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Target language: *a...b (2−SP) Target language: *ab (2−SL)
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Figure 4: Difference in log probabilities for legal and illegal forms over the course of PFA induction for toy
languages. A large positive value indicates that the relevant constraint has been learned.

A PFA for the language is given in Figure 3 (left). The language contains all strings that do not have an a
followed immediately by a b. A PFA for a 2-SP language is shown in Figure 3 (right).

We evaluate the ability of our learner to induce these languages from data by exposing it to 10,000 sample
strings generated from the reference PFAs in Figure 3, and then testing the ability of the learner to assign
higher probability to a legal test string, which follows the restrictions of the target language, as compared
with an illegal test string, which violates the restrictions, but is otherwise matched with the legal string in
terms of factors such as length. For example, for the 2-SL toy language, our legal test string is bacccb# and
the illegal test string is babccc#.

q0 q1

b : 1/4
c : 1/4
# : 1/4 a : 3/8

a : 1/4

c : 3/8
# : 1/4

q0 q1

b : 1/4
c : 1/4
# : 1/4

a : 3/8
c : 3/8

a : 1/4

# : 1/4

Figure 3: Reference automata for the 2-SL language characterized by the constraint *ab (left) and the 2-SP
language characterized by the constraint *a. . . b (right). Arcs are annotated with symbols emitted and their
corresponding emission probabilities.

For both toy languages, we test four learners: (1) an unrestricted PFA with two states, which induces its
transition structure from data, (2) a 2-SL automaton, (3) a 2-SP automaton, and (4) an automaton that can
represent both SL and SP restrictions (the product of a 2-SL automaton and a 2-SP automaton), which we call
2-SP + 2-SL.

Results are shown in Figure 4 in terms of the difference in log probability for the legal string minus the
illegal string (the legal–illegal difference). A positive value indicates that the legal string is receiving higher
probability. We see that, for PFAs that instantiate the appropriate language class, the legal–illegal difference
increases without bound over the course of training, indicating that the relevant restrictions are being learned.
For PFAs from the inappropriate language class (for example the 2-SP automaton applied to data from the
2-SL language), the legal–illegal difference levels off quickly at a small value and stops improving, indicating
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failure to learn the restriction.

5.2 Nonlocal Phonotactics in Navajo and Quechua We now apply our proposed learner to wordlist
data from real languages, Navajo and Quechua, which exhibit nonlocal phonotactic constraints (Gouskova &
Gallagher, 2020). For evaluation, we measure the legal–illegal difference using artificially generated nonce
form datasets containing (1) phonotactically legal words and (2) phonotactically illegal words which violate
certain nonlocal phonotactic constraints while being otherwise well-formed and matched with the legal words
in length (these datasets were produced by Gouskova & Gallagher, 2020). Given these nonce form datasets,
we can compute an average legal–illegal difference.

In addition to the legal–illegal difference computed on nonce forms, we also examine the heldout log
likelihood (LL) for forms that are attested but were not present in the training data that was given to the
learner. Heldout LL is a widely-used metric in machine learning and other fields, with recent applications
in linguistics (Pereira, 2000; Bishop, 2006); it is the average log likelihood of forms that are attested but not
seen during learning. The heldout LL tells us how accurate the learned PFA is in general when predicting the
heldout forms. A high heldout LL indicates that the PFA has learned generalizations from the training data
that are useful in predicting real forms.

5.2.1 Phenomena and data In Navajo, the co-occurrence of alveolar and palatal strident, e.g *s. . . S),
is illegal. The learning data of Navajo includes 6279 Navajo phonological words; we divide this data into
a training set of 5023 forms and a held-out set of 1, 256 forms. The testing data of Navajo consists of 5000
generated nonce words, which were labelled as illegal (N = 3271) and legal (N = 1729) based on whether
the nonlocal phonotactics are satisfied.

In Quechua, any stop cannot be followed by an ejective or aspirated stop at any distance. The learning
data of Quechua includes 10804 phonological words, which we separate into 8643 training forms and 2160
held-out forms. The testing data of Quechua consists of 24352 nonce forms which were manually classified as
legal (N = 18502) and illegal (N = 5810, including stop-aspirate and stop-ejective pairs).

Navajo Quechua
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Figure 5: Performance of a 2-SP automaton, a 2-SL automaton, a 2-SP + 2-SL product automaton, and an
unrestricted PFA with 1024 states

5.2.2 Results Figure 5 shows the performance over the course of training of a 2-SP automaton, a 2-SL
automaton, a 2-SP + 2-SL product automaton, and an unrestricted PFA with 1,024 states.

6



Dai and Futrell Learning Phonotactics in a Differentiable Framework of Subregular Languages

Examining the Heldout LL, we find that the unrestricted PFA learner achieves the highest value, with the
SP+SL learner outperforming the SL learner, indicating that more powerful automata are able to model the
general phonotactic constraints of these languages. The SP learner performs the worst by this evaluation.

Turning to the Legal-Illegal Difference evaluation, we find that the SP and SP + SL learners achieve
substantial legal–illegal differences. This indicates that these learners (and only these learners) successfully
detected the nonlocal phonotactic phenomena in these languages.

5.3 Discussion When training and testing on attested phonotactic patterns, we find that the SL and SP+SL
learners are able to induce the relevant nonlocal constraints, as indicated by the evaluation on nonce forms.
The SP learner and the unrestricted PFA learner do not appear to detect these constraints. On the other hand,
when evaluating based on heldout LL, we find that the unrestricted PFA learner is most effective in learning to
predict attested but heldout forms.

The apparent discrepancy between the two evaluation metrics reflects the different natures of the evaluation.
Heldout LL evaluates the ability to predict held-out forms in general, effectively measuring the ability of the
model to learn all the phonotactic constraints from the training data. The legal–illegal difference evaluated
on nonce forms, on the other hand, reflects the ability to represent only one particular constraint. The two
metrics can be expected to differ if the particular nonlocal cosntraint probed by the nonce evaluation is only
one of many constraints that are relevant for the phonotactics of the language in question.

We conjecture that the unrestricted PFA is learning many phonotactic constraints, including many local
ones such as 3-SL constraints not captured by the 2-SL learner, and that these have high utility in terms of
predicting unseen forms. The unrestricted PFA learner does not pick up on the nonlocal constraints because
they are less useful on average in terms of predicting forms segment-by-segment. This argument suggests that
a more powerful unrestricted PFA (for example one with more states) might be able to detect the nonlocal
constraints.

Within the class of restricted PFAs, we find the best overall performer is the SP+SL learner, which can
represent both local and nonlocal constraints. This supports the claim in Heinz & Rogers (2013) that SP + SL
is advantageous for characterizing natural language phonotactics, while also suggesting that there exist other
constraints beyond this class.

6 Conclusion

We implemented a differentiable framework for inducing probabilistic finite-state automata for
phonotactics from data, and compared the learning of (sub)regular languages from corpus data. Our learner
successfully learns nonlocal constraints when restricted to the appropriate formal language class, and achieves
good performance in predicting attested forms in general. Our framework shows the utility of a probabilistic
approach to phonotactics. It enables the implementation of simple learning algorithms and their evaluation on
both natural and artificial data. We showed that it’s possible to compare the induction of various (sub)regular
languages in a unified framework. Inducing unrestricted Probabilistic Finite-state Automata (PFAs) produces
the best overall fit to naturalistic held-out forms; however, a restricted subregular model (Strictly Piecewise) is
superior in capturing specific nonlocal constraints as evidenced in nonce data. Models in the SP + SL language
class show strength both in learning nonlocal constraints and in predicting naturalistic held-out forms.
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