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1 Introduction: Learning in the face of structural ambiguity

Structural ambiguity poses an interesting challenge for the language learner. When a surface form of a
linguistic expression is compatible with multiple structural representations, how is the learner able to identify
the appropriate representation(s) compatible with the grammar that she is aiming to learn? One approach
to investigating this topic is to computationally model the process of learning. Computational modelling
facilitates fine-tuning of the algorithm’s learning process, thereby enabling a controlled investigation into
how the learning result is affected by various factors of the learning process. A pertinent line of research in
computational learning of structurally ambiguous expressions makes use of a learning process called Robust
Interpretive Parsing (RIP; Tesar & Smolensky 1998, 2000). It is a learning method implemented in error-
driven learning algorithms such as Error-Driven Constraint Demotion (EDCD; Tesar & Smolensky 1998) or
the Gradual Learning Algorithm (GLA; Boersma 1997).1 This paper focuses on problems that arise with one
specific type of RIP-learning algorithm, which is the constraint-ranking GLA (OT-GLA). Following previous
researchers (Boersma & Pater 2008; Jarosz 2013), I call this algorithm the RIP/OT-GLA.

Upon observing a linguistic expression, the RIP/OT-GLA reverse-engineers its input and compares the
structural representations or parses linked to the input. It then identifies the parse that is optimal under its
current version of the grammar. The grammar is a ranking of constraints determined by their ranking values,
a numerical value linked with each constraint. The higher the ranking value, the higher the rank. If the
identified parse is not compatible with the actual observed expression, the RIP/OT-GLA registers that it has
made an error. It then searches for an alternative parse that is both compatible with the observed expression
and as compatible as it can be with its current grammar. Once it has chosen an alternative parse (called the
target parse in this paper), the RIP/OT-GLA alters the grammar by promoting (i.e., increasing the ranking
value of) the constraints that favor the target parse over the erroneous parse, and demoting (i.e., decreasing
the ranking value of) constraints that favor the erroneous parse over the target parse. The alteration happens
incrementally, but with an adequate number of repetitions of this alteration – which would be triggered every
time the learner runs into the expression and makes an error – the ranking between the promoted and demoted
constraints will eventually be reversed.

In order to provide a more concrete introduction of RIP, and to facilitate the description of my research
question, I borrow from Jarosz (2013) a hypothetical example of a RIP learning situation. The tableau in
(1) reflects the grammar of a RIP/OT-GLA learning Polish stress; it is presented with the word [tE"lEfOn].
Definitions of the relevant constraints are given in (2).

(1) Learner’s hypothetical grammar when presented with [tE"lEfOn] (Jarosz 2013:32)
|tElEfOn| ALL-FEET-RIGHT IAMBIC TROCHAIC ALL-FEET-LEFT

a. /("tElE)fOn/ ∗ ∗
b. /(tE"lE)fOn/ ∗ ∗

W c. /tE("lEfOn)/ ∗ ∗
L d. /tE(lE"fOn)/ ∗ ∗

* I thank Adam Albright, Donca Steriade, and Michael Kenstowicz for many helpful discussions and comments
throughout the project. I also thank participants of AMP 2022 for their feedback.
1 See Magri (2012) for an overview of error-driven learning algorithms, and Jarosz (2013) on RIP learning in the context
of error-driven learning algorithms.
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(2) a. ALL-FEET-RIGHT : Align each foot with the right edge of the word.
b. ALL-FEET-LEFT : Align each foot with the left edge of the word.
c. IAMBIC : The final syllable of a foot must be the head.
d. TROCHAIC: The initial syllable of a foot must be the head.

The learner reverse-engineers the input of the word, which is simply the string of segments without any stress
information. In this case the input would be |tElEfOn|, presented between vertical bars at the upper left corner
of the tableau. Candidates a-d in (1) are the potential parses linked to this input. The RIP/OT-GLA calculates
which of the candidates best satisfies the current constraint ranking (ALL-FEET-RIGHT≫ IAMBIC≫ TROCHAIC
≫ ALL-FEET-LEFT). Among the four candidates, candidate (d) (/tE(lE"fon)/) best satisfies the ranking and
would be identified as the optimal parse. However, there is a problem: the stress pattern of candidate (d)
is incompatible with that of the observed word ([tE"lEfOn]). The former shows final stress while the latter
shows penultimate stress. Since there is a discrepancy between the chosen parse and the word, the RIP/OT-
GLA registers that it has made an error and tries to choose a target parse that is compatible with the observed
word. However, there are two candidates that are compatible with the word: candidates (b) (/(tE"lE)fOn/) and
(c) (/tE("lEfOn)/). Between the two, the RIP/OT-GLA chooses the candidate that better satisfies the current
constraint ranking. In this case, that is candidate (c). Once it has chosen the target parse, the RIP/OT-GLA
promotes constraints that favor candidate (c) over candidate (d) and demotes constraints that favor candidate
(d) over candidate (c). Here, TROCHAIC is promoted and IAMBIC is demoted.

Notice that whether the algorithm chooses candidate (b) or candidate (c) as its target parse crucially
determines the direction of learning. Had candidate (b) been chosen, the ranking values of IAMBIC and
TROCHAIC would not have changed. Instead, the RIP/OT-GLA would have demoted ALL-FEET-RIGHT and
promoted ALL-FEET-LEFT. Depending on which parse it thinks is correct, its direction of learning varies
widely. The reason that the RIP/OT-GLA chooses candidate (c) is because it is configured to choose its target
parse based on its current constraint ranking (Boersma 1997; Boersma & Hayes 2001). However, this way of
choosing the target parse is problematic because the current constraint ranking must be flawed in some way.
Had it not been flawed, it would not have incurred an error in the first place.

This problem has been pointed out at a conceptual level by Jarosz (2013), but there have not been
empirical demonstrations of the problem arising in actual learning simulations. One of the two main
contributions of this paper is to address this gap in the literature. I present results from RIP learning of newly
sampled artificial languages, which show evidence that choice of target parse based on constraint ranking can
indeed lead to learning failure. The second contribution of the paper is to propose an alternative method of
choosing the target parse. This alternative method opts for the most economical change by making use of the
Elementary Ranking Condition representation (ERC; Prince 2002). The algorithm using this method, which
I call the RIP/ERC-GLA, calculates for each potential target parse how many rank changes are needed for the
offending constraint to be dominated. Then it chooses the target parse which involves the least amount of
rank changes. Because the most economical change does not necessarily satisfy the top-ranked constraint, it
avoids the pitfall that the original RIP/OT-GLA can fall into.

The remainder of the paper is organized as follows. Section 2 describes themethods used to implement the
RIP/OT-GLA and RIP/ERC-GLA. It also introduces the metrical stress system created by Tesar & Smolensky
(2000), which I used to create the learning problems for this study. In Section 3 I demonstrate examples of
failed learning simulations where the choice of target parse based on the current constraint ranking inhibits
successful learning. I propose in Section 4 the RIP/ERC-GLA as an alternative way of choosing the target
parse. Section 5 compares the learning results of the RIP/OT-GLA and the RIP/ERC-GLA. It also highlights
an advantage of the RIP/ERC-GLA: when the learner is generally on the right track, the RIP/ERC-GLA
converges more efficiently with less errors made on the way. Section 6 concludes.

2 Methodology

2.1 Implementation of the algorithms For this study, I implemented the RIP/OT-GLA and the
RIP/ERC-GLA in the programming language Python.2 In order to ensure that my implementation of the
2 The Python implementation of the algorithms, the 66 artificial languages created as learning problems, and the results
of individual learning trials (offered as text files and figures) are available in the Github repository found in the following
URL: https://github.com/EunsunJou/Economy_RIPGLA
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RIP/OT-GLA is faithful to the original, I performed replications of GLA learning from previous studies. I
was able to replicate results of learning Ilokano metathesis reported by Boersma & Hayes (2001). I was
also able to replicate the learning problem illustrated by Pater (2008), whereby the GLA endlessly promotes
the ranking values of the constraints of a specific artificial language. Furthermore, applying Magri’s (2012)
suggested solution of calibrated promotion to Pater’s problem resulted in successful avoidance of the endless
promotion. These results strongly suggest that the core learning algorithm first described by Boersma (1997)
is successfully replicated in my implementation of the RIP/OT-GLA. Having confirmed this, I implemented
the RIP/ERC-GLA by minimally altering the part of the code responsible for the choice of target parse.

2.2 Creating learning problems I created a set of artificial languages for the RIP/OT-GLA and
RIP/ERC-GLA to learn. These languages were sampled from a system of abstract artificial languages with
metrical stress, first created by Tesar & Smolensky (2000). Previous studies on RIP learning, including
Boersma & Pater (2008) and Jarosz (2013), have also worked with this system. It is built on the following
twelve constraints. Some of the constraint names appear abbreviated in tableaux; these abbreviations are
presented in parentheses next to the constraint names.

• FOOTBINARY (FB): Each foot must be either bimoraic or bisyllabic.
• WSP: Weight-to-stress principle. Each heavy syllable must be stressed.
• PARSE: Each syllable must be footed.
• MAIN-RIGHT (MR): Align the head-foot with the word, right edge.3

• MAIN-LEFT (ML): Align the head-foot with the word, left edge.
• ALL-FEET-RIGHT (AFR): Align each foot with the word, right edge.
• ALL-FEET-LEFT (AFL): Align each foot with the word, left edge.
• WORD-FOOT-RIGHT (WFR): Align the word with some foot, right edge.
• WORD-FOOT-LEFT (WFL): Align the word with some foot, left edge.
• IAMBIC: Align each foot with its head syllable, right edge.
• TROCHAIC: Align each foot with its head syllable, left edge.4

• NONFINAL (NF): Do not foot the final syllable of the word.

Initially, the constraints are all assigned the same ranking value and hence start out at the same tier. But after
the algorithm starts making errors and performs promotions and demotions, the ranking values will change
and the constraints will form a ranking. A constraint ranking is compatible with a set of languages.

A language in this system is a set of abstract words, which in turn are abstract inputs plus a stress pattern.
The abstract inputs are sequences of light or heavy syllables, represented as L and H respectively. The length
of an input is 2 syllables at the shortest, and 7 syllables at the longest. The 2-5 syllable inputs are all possible
combinations of L and H, which result in a total of 60 kinds of inputs. In addition to these, there are the
6-syllable and 7-syllable inputs which exclusively consist of L’s: |L L L L L L|, and |L L L L L L L|. Each
language assigns different stress patterns to its inputs, resulting in a unique set of 62 words. Using a Praat
script (Boersma &Weenink 2022), I randomly generated 66 languages that are compatible with some ranking
of these constraints. They were labeled Lang 1, Lang 2, ..., Lang 66. With these languages, I now had ample
learning problems for the algorithms to solve. For every language, the RIP/OT-GLA and the RIP/ERC-GLA
each performed 30 learning trials. This resulted in a total of 3,960 learning results.
3 What is called MAIN-LEFT and MAIN-RIGHT here are also named ALIGN-HEAD-LEFT and ALIGN-HEAD-RIGHT. See
Kager (2007:210) for an example of using ALIGN-HEAD-RIGHT in explaining data from Cairene Arabic.
4 Instead of TROCHAIC, Tesar and Smolensky use the constraint FOOTNONFINAL which requires the head syllable to not
only be aligned to the left edge, but to have a syllable follow after it. In other words, a foot such as (H1) would satisfy
TROCHAIC but it would not satisfy FOOTNONFINAL. Their reason for this choice is to reflect a typological asymmetry
pointed out by Hayes (1995): trochaic languages may be either quantity sensitive or insensitive, while iambic languages
are always quantity sensitive. I judged that this typological generalization is not very relevant for the artificial languages
that I have been working with and thus chose the constraint TROCHAIC, which is the mirror image of IAMBIC.
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Figure 1: Sample text report of a failed learning trial of Lang 55 by the RIP/OT-GLA

RIP/OT-GLA learning results
Algorithm: Original Configuration
Grammar changed 1743/62000 times
Plasticity: 1.0
Noise: 2.0
Constraints and ranking values
FootBin 104.8
WSP 102.91666666666666
Main-L 100.33333333333333
WFR 96.83333333333331
WFL 95.83333333333333
Main-R 88.3
Trochaic 88.06666666666666
AFR 86.54999999999994
AFL 85.79999999999993
Nonfinal 84.0
Iambic 82.89999999999998
Parse 77.66666666666664

1 words not (fully) learned in evaluation (target, learned form, learned parse):
[L L1 L] [L1 L L] /(L1 L) L/

Other than the method of choosing the target parse, all other parameters were set identically for the two
algorithms. Plasticity was set at 1, and noise at 2. I adopted the calibrated promotion of constraints proposed
by Magri (2012). In each trial, the algorithm encountered each of the 62 words 1,000 times, amounting to a
total of 62,000 individual word tokens seen in each trial. The order of the 62,000 tokens was randomized for
each trial. At the end of each trial, there was an evaluation phase where the algorithm produced an output for
each input using its final resulting grammar. The algorithm is considered to have succeeded in learning the
language if it produces the correct outputs for all 62 inputs. The learner produced a text report of each trial
where it printed out the final constraint ranking, the number of grammar changes the algorithmmade, whether
it succeeded in learning the language, and which words it failed to learn in case it failed. Figure 1 shows the
contents of a sample text report of a failed learning trial of Lang 55 by the RIP/OT-GLA.

3 Demonstration of the problem: Choosing the target parse with a losing grammar

Choosing the correct target parse is crucial in determining the trajectory of RIP learning. Among the
parses that are compatible with the stress pattern of the observed word, the RIP/OT-GLA chooses the one that
best satisfies the current constraint ranking. Jarosz (2013) points out that this way of choosing a target parse
is problematic because it is dependent on a “losing grammar”. By the point the RIP/OT-GLA registers that it
has run into an error, its current constraint ranking is guaranteed to be wrong; otherwise an error would not
have occurred. However, it continues to parse the observed stress pattern with this decidedly wrong grammar.

Jarosz acknowledges this problem at a conceptual level, but there have not been empirical demonstrations
of this problem actually affecting the results of learning. In this section, I demonstrate actual examples of the
RIP/OT-GLA failing to learn a language due to its choice of target parse. The languages of interest are Lang
55 and Lang 3. The full list of words for these languages can be found in the appendix.

3.1 Case study 1: Lang 55 Out of the 30 learning trials for Lang 55, the RIP/OT-GLA succeeded in
9 of them. We know that Lang 55 is a language with strictly binary, trochaic feet. This is because all of
the grammars resulting from the 9 successful trials showed this property: they rank FOOTBINARY at or near
the top, and rank TROCHAIC over IAMBIC (TROCHAIC ≫ IAMBIC). Another property that differentiated the
successful and failed grammars is the ranking between WORD-FOOT-RIGHT and MAIN-LEFT. In the grammars
resulting from the 9 successful trials, WORD-FOOT-RIGHT was ranked above MAIN-LEFT (WORD-FOOT-RIGHT
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≫ MAIN-LEFT). For the 21 failed trials, WORD-FOOT-RIGHT was ranked below MAIN-LEFT (MAIN-LEFT ≫
WORD-FOOT-RIGHT).

Now that we have a sense of what characterizes the successful and failed learning trials, let us examine
what made the failed trials fail. There was a clear pattern throughout 20 of the 21 failed trials.5 The algorithm
failed to learn the correct stress pattern for one input: |L L L|. The correct realization of |L L L| in Lang 55 is
[L L1 L]. (The number 1 corresponds to main or primary stress. The L1 here is the syllable bearing primary
stress. Sometimes words also have secondary stress, which is marked with the number 2.) In these failed
trials, the RIP/OT-GLA produced [L1 L L], with a left-aligned trochee: /(L1 L) L/. This parse is incompatible
with the observed word, since the parse surfaces as initial stress while the actual word bears penultimate stress.
Therefore, the RIP/OT-GLA registers that it has made an error and proceeds to choose a target parse.

Figure 2 illustrates this situation with an actual example. It reflects the grammar that emerged at the
end of a failed learning trial. The numbers in each cell indicate the number of times the constraint of the
corresponding column is violated by the candidate of the corresponding row. Candidate (a) is the parse that
is wrongly identified as optimal by the RIP/OT-GLA. Candidates (b-d) are the potential target parses whose
stress patterns are compatible with the observed word.

Figure 2: A tableau for |L L L| from a failed learning trial of Lang 55
|L L L| FB WSP ML WFR WFL MR TROC AFR AFL NF IAMB PARSE

� a. /(L1 L) L/ 0 0 0 1 0 1 0 1 0 0 1 1
b. /(L L1) L/ 0 0 0 1 0 1 1 1 0 0 0 1
c. /L (L1 L)/ 0 0 1 0 1 0 0 0 1 1 1 1
d. /L (L1) L/ 1 0 1 1 1 1 0 1 1 0 0 2

Among candidates (b-d), candidate (b) best satisfies the current ranking. Upon choosing candidate (b) as
its target parse, the RIP/OT-GLA promotes constraints that favor candidate (b) over candidate (a) and demotes
constraints that favor candidate (a) over candidate (b). This means that TROCHAIC will be demoted and IAMBIC
will be promoted. But we know from observing the 9 successful trials that for the learning to be successful,
TROCHAIC needs to outrank IAMBIC. Furthermore, we know that WORD-FOOT-RIGHT should outrank MAIN-
LEFT for the learning to be successful. But since candidate (b) and candidate (a) behave identically regarding
WORD-FOOT-RIGHT and MAIN-LEFT, the ranking between these two constraints remain as is. In other words,
the RIP/OT-GLA focuses on the wrong pair of candidates to work on while the constraints which actually
hinder successful learning remain untouched. It should be emphasized that this problem occurs as a result
of choosing candidate (b) as the target parse. Choosing a different candidate as the target parse leads to a
different and more successful learning result, as will be demonstrated in section 4.

3.2 Case study 2: Lang 3 Lang 3 is another language that the RIP/OT-GLA had difficulty learning. It
failed in 29 out of the 30 trials for this language. Similarly to how it kept failing on the same input for Lang
55, it showed repeated failure for a handful of words. But this time, there were two different sets of words
that kept causing it to fail. In 15 of the 29 trials, it failed on the inputs |H L L L| and |H H L L L|. In the
remaining 14, it failed on three inputs: |L L L L L|, |L H L L L|, and the seven-syllable |L L L L L L L|. This
suggests that there are two distinct groups of wrong grammars that the RIP/OT-GLA produced. In this section
I illustrate a problem with the former set of grammars, which produced wrong outputs for |H L L L| and |H H
L L L|. Below I present information about the two inputs in Lang 3.

(3) a. Correct output of |H L L L|: [H1 L L L2]
The learner’s wrong output: [H1 L L2 L] (parse: /(H1) (L L2) L/)

b. Correct output of |H H L L L|: [H1 H2 L L L2]
The learner’s wrong output: [H1 H2 L L2 L] (parse: /(H1) (H2) (L L2) L/)

5 The one exceptional trial here was what could be called a “crashed” trial. Crashed trials are characterized by perpetual
demotion of the ranking values of some constraints during the entire learning trial. At the end of this trial, the ranking
values of some constraints plunged under -7,000 and the algorithm never learned 50 out of the 62 words. I do not have
an explanation for why these crashes happen, but they are rare enough that they do not get in the way of observing the
typical cases of failure. Out of the 29 failed trials of Lang 3 (discussed in section 3.2), there were no crashed trials.
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Crucially, the 15 grammars which produced these wrong outputs rank IAMBIC over PARSE (IAMBIC ≫
PARSE), while the correct trial resulted in the opposite ranking (PARSE ≫ IAMBIC).6 Figures 3a and 3b are
tableaux from a failed learning trial of Lang 3.

Figure 3: Tableaux from a failed learning trial of Lang 3

(a) Tableau for |H L L L|

|H L L L| FB WSP ML WFL IAMB PARSE MR TROCH NF WFR AFL AFR

� a. /(H1) (L L2) L/ 0 0 0 0 0 1 3 1 0 1 1 4
b. /(H1) L (L L2)/ 0 0 0 0 0 1 3 1 1 0 2 3
c. /(H1 L) (L L2)/ 0 0 0 0 1 0 2 1 1 0 2 2
d. /(H1 L) L (L2)/ 1 0 0 0 1 1 2 0 1 0 3 2
e. /(H1) L L (L2)/ 1 0 0 0 0 2 3 0 1 0 3 3

(b) Tableau for |H H L L L|

|H H L L L| FB WSP ML WFL IAMB PARSE MR TROCH NF WFR AFL AFR

� a. /(H1) (H2) (L L2) L/ 0 0 0 0 0 1 4 1 0 1 3 8
b. /(H1) (H2) L (L L2)/ 0 0 0 0 0 1 4 1 1 0 4 7
c. /(H1) (H2 L) (L L2)/ 0 0 0 0 1 0 4 1 1 0 4 6
d. /(H1) (H2) L L (L2)/ 1 0 0 0 0 2 4 0 1 0 5 7
e. /(H1) (H2 L) L (L2)/ 1 0 0 0 1 1 4 0 1 0 5 6

In both tableaux, candidate (a) is the parse erroneously identified by the RIP/OT-GLA as optimal under
the current constraint ranking. Candidates (b-e) are the potential target parses. Candidates (d) and (e) can
be immediately ruled out due to their fatal violation of FOOTBINARY. Between candidates (b) and (c), the
algorithm chooses candidate (b) because of the violation of IAMBIC by candidate (c). Once it chooses the
target parse as candidate (b), it promotes constraints that favor candidate (b) over candidate (a) while demoting
constraints that favor candidate (a) over candidate (b). In this case, the former are WORD-FOOT-RIGHT and
ALL-FEET-RIGHTwhile the latter are NONFINAL andALL-FEET-LEFT. But we know from the successful learning
trial that the crucial change that needs to be made is to flip the ranking between IAMBIC and PARSE. However,
because candidate (a) and candidate (b) behave identically with regards to IAMBIC and PARSE, these two
constraints are never reranked. Hence Lang 3 demonstrates another example where the RIP/OT-GLA fails to
find the correct constraint ranking due to its choice of target parse.

4 An alternative choice of target parse: Opting for the most economical change

In this section I propose an alternative method of choosing a target parse. This method makes use of
the Elementary Ranking Condition (ERC) representation, also known as comparative tableaux (Prince 2002).
Instead of choosing the target parse that satisfies the higher ranked constraints, an algorithm using this method
chooses the candidate parse which, if chosen as the target, would need the least number of rerankings to
accommodate for. The number of rerankings is measured using the ERC representation. I call this alternative
method the ERC method, and I call the algorithm that uses this method the RIP/ERC-GLA. In section 4.1 I
briefly explain the ERC representation, and how it can be used to measure the amount of rank changes needed
to make the grammar favor one parse over the other. I then explain in section 4.2 how I applied this logic to
my implementation of the ERC method.

4.1 The Elementary Ranking Condition The objective of error-driven learning is to change the
grammar so that the resulting grammar does not produce the wrong output (the error) but instead produces
the correct output. Let us call the wrong output the loser, and the correct output the winner. The ERC
6 The reader may rightly be hesitant to accept that PARSE≫ IAMBIC is a correct characterization of Lang 3, since there is
only one successful learning trial to draw this conclusion from. However, the 17 successful trials with the RIP/ERC-GLA
also all ranked PARSE over IAMBIC. See section 5.1.
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representation classifies constraints into three classes: loser-preferring, winner-preferring, and even. A loser-
preferring constraint is one which is violated more by the winner than the loser. It might be the case that
only the winner violates this constraint, or in the case of gradiently violable constraints the winner violates
the constraint more times than the loser does. A winner-preferring constraint, similarly, is a constraint that is
violatedmore by the loser than the winner. An even constraint is violated the same amount by both constraints.
The loser-preferring, winner-preferring, and even constraints are marked L, W, and e respectively.

This classification is based on a winner-loser pair. It is often the case that more than one potential winner
is considered against the loser. In this case, the ERC representation is created for each winner-loser pairing.
In figure 4 I present the ERC representations of the tableau of a failed trial of Lang 55, with the tableau itself
repeated for reference. The line labels of the ERC representations always correspond to the winner’s label
in the tableau. For example, line (b) in figure 4 is the ERC representation of the winner-loser pair where the
winner is candidate (b). In the same figure, line (c) is the ERC representation of the winner-loser pair where
the winner is candidate (c). The loser is always candidate (a), the wrongly identified parse that is incompatible
with the observed word.

Figure 2: A tableau for |L L L| from a failed learning trial of Lang 55 (repeated)

|L L L| FB WSP ML WFR WFL MR TROC AFR AFL NF IAMB PARSE

� a. /(L1 L) L/ 0 0 0 1 0 1 0 1 0 0 1 1
b. /(L L1) L/ 0 0 0 1 0 1 1 1 0 0 0 1
c. /L (L1 L)/ 0 0 1 0 1 0 0 0 1 1 1 1
d. /L (L1) L/ 1 0 1 1 1 1 0 1 1 0 0 2

Figure 4: ERC representations of the tableau of Lang 55

FB WSP ML WFR WFL MR TROC AFR AFL NF IAMB PARSE
b. ∼ /(L L1) L/ e e e e e e L e e e W e
c. ∼ /L (L1 L)/ e e L W L W e W L L e e
d. ∼ /L (L1) L/ L e L e L e e e L e W L

A benefit of using the ERC representation is that it makes it clear which constraints should be reranked in
order to accommodate the potential winner. For each winner-loser pair, it is crucial that the highest-ranked or
undominated L (which is always the leftmost L in an ERC representation) be outranked by aW. Consider first
candidate (b), or /(L L1) L/. In order to change the current ranking to one that would produce candidate (b)
as the winner, IAMBIC needs to outrank TROCHAIC. Once IAMBIC outranks TROCHAIC, /(L L1) L/ would be the
optimal parse under the new constraint ranking. Similarly, for candidate (c), it is important that MAIN-LEFT
be outranked by some winner-preferring constraint such as WORD-FOOT-RIGHT or MAIN-RIGHT.

4.2 Identifying the most economical change with the ERC While any W can be promoted to outrank
an L in an ERC representation, the most economical change would be to promote the highest W. For candidate
(c) in figure 4 this would mean promotingWORD-FOOT-RIGHT. For the other two candidates, there is only one
W. Therefore, promoting that W is automatically the most economical change. The ERC method I propose
here compares the LW distance of the ERC representations of each winner-loser pair and chooses the pair
with the shortest LW distance. I define LW distance as the number of constraints the highest W would have
to overcome for it to outrank the undominated L. For candidate (b), the LW distance is 4 since IAMBIC needs
to switch rankings with four constraints above it (NONFINAL, ALL-FEET-LEFT, ALL-FEET-RIGHT, TROCHAIC)
in order to outrank TROCHAIC. For candidate (c), the LW distance is 1 since WORD-FOOT-RIGHT only needs
to overcome MAIN-LEFT. Lastly, the LW distance for candidate (d) is 10.

Since the LW distance of candidate (c) is shortest, candidate (c) is chosen as the target parse. As a
result, the RIP/ERC-GLA promotes constraints that prefer candidate (c) over candidate (a), and demotes
constraints that prefer candidate (a) over candidate (c). Specifically, WORD-FOOT-RIGHT, MAIN-RIGHT, ALL-
FEET-RIGHT are promoted and MAIN-LEFT, WORD-FOOT-LEFT, ALL-FEET-LEFT, and NONFINAL are demoted.
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What is important is that WORD-FOOT-RIGHT is promoted and MAIN-LEFT is demoted. Since WORD-FOOT-
RIGHT is ranked above MAIN-LEFT in all of the 9 successful learning trials of Lang 55, this is indeed a step
in the right direction. Compare this result with that of the RIP/OT-GLA, which would choose candidate (b)
as its target parse. Once this candidate is chosen as the target, only IAMBIC will be promoted and TROCHAIC
will be demoted. Since the problematic ranking of MAIN-LEFT ≫ WORD-FOOT-RIGHT is never fixed, the
RIP/OT-GLA fails to change the grammar in a desirable direction.

A similar improvement was observed for Lang 3 with the ERC method. Figure 5 shows the ERC
representations for |H L L L| and |H H L L L| from Lang 3.

Figure 5: ERC representations for |H L L L| and |H H L L L| in Lang 3

(a) ERC representations for |H L L L|

FB WSP ML WFL Iamb Parse MR Troc NF WFR AFL AFR
b. ∼ /(H1) L (L L2)/ e e e e e e e e L W L W
c. ∼ /(H1 L) (L L2)/ e e e e L W W e L W L W
d. ∼ /(H1 L) L (L2)/ L e e e L e W W L W L W
e. ∼ /(H1) L L (L2)/ L e e e e L e W L W L W

(b) ERC representations for |H H L L L|

FB WSP ML WFL Iamb Parse MR Troc NF WFR AFL AFR
b. ∼ /(H1) (H2) L (L L2)/ e e e e e e e e L W L W
c. ∼ /(H1) (H2 L) (L L2)/ e e e e L W e e L W L W
d. ∼ /(H1) (H2) L L (L2)/ L e e e e L e W L W L W
e. ∼ /(H1) (H2 L) L (L2)/ L e e e L e e W L W L W

In figure 5a, the LW distance of candidate (b) is 1, since WORD-FOOT-RIGHT needs to outrank NONFINAL right
above it. The LW distance of candidate (c) is also 1, although this time it is because PARSE needs to outrank
IAMBIC. For candidate (d), the LW distance is 6: MAIN-RIGHT needs to overcome six constraints above it to
be able to dominate the L of FOOTBINARY. Lastly, the LW distance of candidate (e) is 7. In figure 5b, the
LW distance of candidates (b) and (c) are again 1. The LW distance for candidates (d) and (e) are 7 since
TROCHAIC needs to overcome seven constraints. Under the ERC method, both |H L L L| and |H H L L L|
have two winners with the shortest LW distance: candidates (b) and (c). Whenever there is a tie like this, the
RIP/ERC-GLA is configured to randomly choose one of the two. If candidate (b) is chosen, WORD-FOOT-
RIGHT and ALL-FEET-RIGHT are promoted while NONFINAL and ALL-FEET-LEFT are demoted. If candidate (c)
is chosen, the algorithm additionally demotes IAMBIC and promotes PARSE (and MAIN-RIGHT for |H L L L|).

It was pointed out in section 3.2 that all successful constraint rankings compatible with all of the words
of Lang 3 rank PARSE over IAMBIC. Notice that the RIP/ERC-GLA is able to make the correct change by
choosing candidate (c) as its target parse, at least roughly half of the times it runs into an error for |H L L L|
and |H H L L L|. Compare this situation with that of the RIP/OT-GLA, where the target parse will always be
candidate (b). As a result, the RIP/OT-GLA never has a chance to register the ranking IAMBIC ≫ PARSE as
problematic, and fails to ever change it. Hence the ERC method makes it possible for the RIP/ERC-GLA to
choose a target parse that actually pushes it in the right direction. In the following section I discuss how this
alternative algorithm affected the learning results of the 66 artificial languages I have sampled in this study.

5 Results and discussion

5.1 Similar overall performance, but improvement in Lang 55 and Lang 3 For the 66 artificial
languages sampled in this study, the RIP/OT-GLA and the RIP/ERC-GLA each performed 30 learning trials.
As presented in figure 1, each trial was followed by an evaluation phase which reported the final constraint
ranking, the number of grammar changes made, whether it succeeded in learning the language, and which
words it failed to learn in case it failed.
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Table 1 summarizes the result of learning across all 66 languages for the two algorithms.7 The overall
performances of the RIP/OT-GLA and the RIP/ERC-GLA are similar. The RIP/OT-GLA succeeded in
learning an average of 23.03 out of 30 trials per language, while the RIP/ERC-GLA succeeded in an average
of 23.65 trials.

Table 1: Mean number of successful trials (out of 30) across all languages

RIP/OT-GLA RIP/ERC-GLA
Mean 23.03 (76.77%) 23.65 (78.83%)
Standard Deviation 9.66 6.46

While the ERC method did not improve overall performance, it clearly improved the success rate in learning
the languages of interest, Lang 55 and Lang 3. The RIP/OT-GLA made 9 successful trials of learning Lang
55 and only one successful trial learning Lang 3. In contrast, the RIP/ERC-GLA made 26 successful trials for
Lang 55 and 17 successful trials for Lang 3.

Table 2: Number of successful trials (out of 30) for Lang 55 and Lang 3

RIP/OT-GLA RIP/ERC-GLA
Lang 55 9 26
Lang 3 1 17

These results suggest that there are multiple factors hindering the success of the RIP/OT-GLA. One of
these factors is the choice of target parse. While adopting the ERC method does not bring about a drastic
improvement for all languages, the boost in performance for Lang 55 and Lang 3 indicates that the choice
of target parse is one of the prominent problems of the RIP/OT-GLA that can be addressed by adopting this
method.

5.2 More efficient convergence with the RIP/ERC-GLA The desideratum of the ERC method is to
produce the correct stress pattern by undergoing the most economical change. It chooses as its target parse the
parse that involves the least amount of change for the critical constraint (the highestW in ERC representation).
It is then perhaps no surprise that the RIP/ERC-GLA convergedmore efficiently than the RIP/OT-GLA, where
efficiency is indicated by the number of grammar changes performed until convergence. Both algorithms
record how many times a grammar change occurred during a trial. A grammar change occurs anytime the
algorithm registers an error, and performs promotion and demotion of ranking values. Since it encounters
62,000 words in each trial, a learner could in theory change the grammar up to 62,000 times if it incurs an
error for every word it encounters. Of course, the actual number of grammar changes are much lower than
that; but the numbers still range from 14 to 30,233.

As an approximate measure of efficiency, I collected for each language the median of the number of
grammar changes of all successful trials by the RIP/OT-GLA and the RIP/ERC-GLA.8 For example, the
RIP/OT-GLA performed 27 successful learning trials of Lang 6. The number of grammar changes ranged
from 113 to 1,465 for the 27 trials, and the median was 241. The RIP/ERC-GLA had 23 successful learning
7 These reported performances are quite higher than the 58.95% reported by Boersma & Pater (2008) for their noisy
RIP/OT-GLA. I attribute this difference to the difference in the set of languages learned. The large standard deviation
indicates that the difficulty of a language varies widely for the RIP/OT-GLA – some languages are learned more easily,
while others are much harder to learn. The learning results are affected by the kind of language that the learner is presented
with. I was not able to obtain information about the 124 constructed languages used by Boersma and Pater, but it is quite
plausible that their set of languages and my set of 66 randomly sampled languages do not have much overlap between
them.
8 The presence of outliers makes the median a more appropriate measure than the mean. Due to the stochastic nature
of the GLA, it sometimes takes the algorithms a significantly larger amount of grammar changes than typical to achieve
convergence. In learning Lang 62, for example, the RIP/OT-GLA typically converged after 200–300 grammar changes.
But in one trial, it needed 3,363 changes before converging. In this case, the mean of the grammar changes for the 25
trials amounts to 392.64 while the median is 223, a much truer representation of the actual number of grammar changes.
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trials, with grammar changes ranging from 115 to 339. The median was 153. Since the median was lower for
the RIP/ERC-GLA, I deemed the ERC method as producing more efficient convergence for Lang 6.

Table 3 shows the results of the comparison. There are 60 languages accounted for here. Languages 13,
34, and 35 are excluded because either one or both algorithms did not have any successful trials, thus making
a comparison impossible. Languages 14, 19, and 59 are excluded because the two algorithms showed the
same median value for these languages.

Table 3: Comparison of median number of grammar changes

(a) Languages that showed lower median of changes by the RIP/ERC-GLA (n = 41)

Language OT ERC Difference
Lang 01 119 118.5 0.5
Lang 02 414 147 267
Lang 03 1279 145 1134
Lang 05 160 158 2
Lang 06 241 153 88
Lang 07 189.5 187.5 2
Lang 09 141 133.5 7.5
Lang 10 105 97 8
Lang 11 131 89 42
Lang 12 57 54 3
Lang 15 3500 129 3371
Lang 17 53 51 2
Lang 18 146.5 90.5 56
Lang 20 170 107 63
Lang 21 5478 159 5319
Lang 22 5348.5 39 5309.5
Lang 24 93 83 10
Lang 25 16.5 16 0.5
Lang 27 954 189.5 764.5
Lang 29 3061 106.5 2954.5
Lang 32 132 129 3

Language OT ERC Difference
Lang 33 5426 100 5326
Lang 37 1729 148 1581
Lang 38 2915 157 2758
Lang 41 451.5 43 408.5
Lang 42 50 49.5 0.5
Lang 44 9723 44 9679
Lang 45 97.5 97 0.5
Lang 46 90 86 4
Lang 48 248 229.5 18.5
Lang 49 2963 103 2860
Lang 50 96 91 5
Lang 51 51.5 49 2.5
Lang 52 274 104.5 169.5
Lang 54 280 88 192
Lang 55 231 105 126
Lang 57 184 168 16
Lang 58 232 221.5 10.5
Lang 62 223 214 9
Lang 63 141 129 12
Lang 64 117 100 17
Mean difference 1039.09

(b) Languages that showed lower median of changes by the RIP/OT-GLA (n = 19)

Language OT ERC Difference
Lang 04 147 159 12
Lang 08 82.5 84 1.5
Lang 16 187 198.5 11.5
Lang 23 130 180 50
Lang 26 50 52 2
Lang 28 177 184 7
Lang 30 115 122 7
Lang 31 133.5 146 12.5
Lang 36 63 67.5 4.5
Lang 39 62 68 6

Language OT ERC Difference
Lang 40 62.5 63 0.5
Lang 43 145 155 10
Lang 47 89 102 13
Lang 53 142.5 151.5 9
Lang 56 75 79 4
Lang 60 109 121 12
Lang 61 49 54.5 5.5
Lang 65 100 104 4
Lang 66 140.5 190 49.5
Mean difference 11.66

Among the 60 languages compared, 41 of them showed a lower median under the ERC method. The
mean difference of the median grammar changes for these languages is 1039.09. Roughly speaking, it took
the RIP/OT-GLA about 1039.09 more grammar changes than the RIP/ERC-GLA to converge on the correct
grammar. It is clear that for these languages, the ERCmethod led to more efficient convergence. The situation
is quite different for the 19 languages which showed a smaller median grammar change with the RIP/OT-GLA.
It may seem like in these languages, the RIP/OT-GLA converges more efficiently than the RIP/ERC-GLA.
However, the mean difference of the median grammar changes for these languages is 11.66. In other words,

10



Eunsun Jou Economy-based Amendment to RIP

the it took the RIP/ERC-GLA on average 11.66 more grammar changes to converge than the RIP/OT-GLA.
This seems a rather insignificant difference against a backdrop of 62,000 potential opportunities for grammar
change, and against the much larger difference of 1039.09 in the other group. Given that the number of
grammar changes can differ on the order of 100 even within the same language under the same configuration,
this difference seems more like a tie rather than a significantly more efficient convergence.

The ERCmethod by itself does not enhance the success rate of RIP learning, but it does help the algorithm
reach its goal more quickly when the learner is generally on the right track. Since the ERCmethod is designed
to opt for efficiency, it is not surprising that it leads to efficient convergence. However, the magnitude of the
difference is telling. When the ERC method leads to more efficient convergence, it does so by an average of
1039 grammar changes. The median grammar change of Languages 21, 22, and 33 are above 5,000 for the
RIP/OT-GLA but 159, 39, and 100 respectively for the RIP/ERC-GLA. This drastic decrease in the number of
grammar changes suggests that there is a factor which contributes to inefficient learning for the RIP/OT-GLA
that is avoided by the RIP/ERC-GLA.

6 Conclusion

This paper demonstrated a problem that arises under the original configuration of the RIP/OT-GLA.
When the learner registers that it has made an error, it needs to choose an alternative parse of the word that
it is currently faced with. The choice of the target parse determines which constraints are promoted and
demoted, hence affecting the direction of learning. In choosing the target parse, the learner chooses the one
which best satisfies the current constraint ranking. In other words, the parse which is favored by the high-
ranked constraints is chosen as the target. But this is problematic because the constraint ranking is necessarily
flawed – if it was not flawed, it would not have incurred an error. This problem was previously recognized
by Jarosz (2013), but at a conceptual level. This paper demonstrates that the problem is real. It discusses the
case of Lang 55 and Lang 3, where the OT-based choice of target parse hinders the learner from changing
the constraint rankings that crucially need to be changed in order to reach success. As an alternative method
of choosing the target parse, I suggested the ERC method. Implemented in the algorithm RIP/ERC-GLA,
the ERC method rewards economical change. Among the potential target parses, the learner chooses the
parse which needs the least amount of rerankings for it to surface as the winner. Since the most economical
change does not always mean satisfying the high-ranked constraints, this method is less dependent on the
current, flawed constraint ranking. While the ERC method is not a cure-all for the problems of RIP learning,
it certainly solves the problem that it is designed to solve. The learner showed significantly improved learning
results for Lang 55 and Lang 3. Furthermore, it contributes tomore efficient convergence. The RIP/ERC-GLA
reaches convergence after a much smaller number of grammar changes.
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Appendix: Full word list of Lang 55 and Lang 3

The number 1 corresponds to primary stress, and the number 2 to secondary stress.

Table 4: Full list of words for Lang 55

[L1 L] [H1 H2 H2] [H1 L H2 L] [L1 L H2 L H2] [H1 L L L2 L] [H1 H2 L H2 H2]
[L H1] [L1 L L2 L] [H1 L H2 H2] [L1 L H2 H2 L] [H1 L L L H2] [H1 H2 H2 L2 L]
[H1 L] [L1 L L H2] [H1 H2 L2 L] [L1 L H2 H2 H2] [H1 L L H2 L] [H1 H2 H2 L H2]
[H1 H2] [L1 L H2 L] [H1 H2 L H2] [L H1 L L2 L] [H1 L L H2 H2] [H1 H2 H2 H2 L]
[L L1 L] [L1 L H2 H2] [H1 H2 H2 L] [L H1 L L H2] [H1 L H2 L2 L] [H1 H2 H2 H2 H2]
[L1 L H2] [L H1 L2 L] [H1 H2 H2 H2] [L H1 L H2 L] [H1 L H2 L H2] [L1 L L L L2 L]
[L H1 L] [L H1 L H2] [L1 L L L2 L] [L H1 L H2 H2] [H1 L H2 H2 L] [L1 L L L L L2 L]
[L H1 H2] [L H1 H2 L] [L1 L L L H2] [L H1 H2 L2 L] [H1 L H2 H2 H2]
[H1 L2 L] [L H1 H2 H2] [L1 L L H2 L] [L H1 H2 L H2] [H1 H2 L L2 L]
[H1 L H2] [H1 L L2 L] [L1 L L H2 H2] [L H1 H2 H2 L] [H1 H2 L L H2]
[H1 H2 L] [H1 L L H2] [L1 L H2 L2 L] [L H1 H2 H2 H2] [H1 H2 L H2 L]

Table 5: Full list of words for Lang 3

[L L1] [H1 H2 H2] [H1 L H2 L] [L L1 H2 L H2] [H1 L L2 L L2] [H1 H2 L H2 H2]
[L H1] [L L1 L L2] [H1 L H2 H2] [L L1 H2 H2 L] [H1 L L2 L H2] [H1 H2 H2 L L2]
[H1 L] [L L1 L H2] [H1 H2 L L2] [L L1 H2 H2 H2] [H1 L L2 H2 L] [H1 H2 H2 L H2]
[H1 H2] [L L1 H2 L] [H1 H2 L H2] [L H1 L L2 L] [H1 L L2 H2 H2] [H1 H2 H2 H2 L]
[L L1 L] [L L1 H2 H2] [H1 H2 H2 L] [L H1 L L2 H2] [H1 L H2 L L2] [H1 H2 H2 H2 H2]
[L L1 H2] [L H1 L L2] [H1 H2 H2 H2] [L H1 L H2 L] [H1 L H2 L H2] [L L1 L L2 L L2]
[L H1 L] [L H1 L H2] [L L1 L L2 L] [L H1 L H2 H2] [H1 L H2 H2 L] [L L1 L L2 L L2 L]
[L H1 H2] [L H1 H2 L] [L L1 L L2 H2] [L H1 H2 L L2] [H1 L H2 H2 H2]
[H1 L L2] [L H1 H2 H2] [L L1 L H2 L] [L H1 H2 L H2] [H1 H2 L L L2]
[H1 L H2] [H1 L L L2] [L L1 L H2 H2] [L H1 H2 H2 L] [H1 H2 L L2 H2]
[H1 H2 L] [H1 L L2 H2] [L L1 H2 L L2] [L H1 H2 H2 H2] [H1 H2 L H2 L]
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