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1 Introduction

The main cue to a phonological contrast can shift over time, e.g. a voicing contrast ([pa] vs [ba])
becoming a pitch contrast ([pa] vs [pa]). Some contrast shift sound changes are more likely to occur than
others, but existing computational models of sound change (e.g. Kirby & Sonderegger, 2015) do not directly!
focus on contrast shifts or asymmetries in their typology.

This paper builds on Yang (2019)’s proposal that contrast shift is more likely to occur between cues that
enhance the same auditory dimension. While supported by a cross-linguistic survey, Yang (2019)’s account
remains to be computationally implemented, with a model of these auditory dimensions as a prerequisite. As
a first step toward this goal, I tested whether the speech perception component of a neural network model of
sound change (Begus, 2020) exhibits behavior characteristic of the auditory dimension “spectral continuity,”
relevant to stop voicing, by adapting a relevant human experimental paradigm (Kingston et al., 2008).

Motivated by the theoretical properties of the auditory dimensions appearing similar to the model’s
representations for processing acoustic data, I tested the hypothesis that the model’s perceptual results would
show dependence between the same pairs of cues as human listeners have been found to. However, the
results of this probing experiment did not support the hypothesis that the model exhibits human-like behavior,
indicating that the model’s behavior in practice differs from expected and that further modification is needed
to model the proposed bias in contrast shift typology.

Furthermore, the model under investigation was a Convolutional Neural Network (CNN), commonly
used in speech applications (e.g. Palaz et al., 2013), and these results identified one way that they may
process acoustic data differently from human listeners. The probing experiment that I conducted in this
paper represents a synthesis of a human experimental paradigm and a neural network interpretation strategy;
it combines phonetic experimental paradigms, where human participants’ representations of stimuli are
estimated with tasks, and neural network probing, which directly accesses the model’s internal representations
of stimuli.

I extended Ward’s (2019) probing method, which was used to compare human visual perception to a
CNN trained for visual tasks; I applied it to a speech processing experiment. Burridge & Vaux (2022) also
applied a human experimental paradigm to a speech processing CNN, but their method is incompatible with
the human experimental paradigm relevant to the auditory dimensions of Yang (2019)’s account. Burridge
& Vaux (2022) probed the output of the network rather than the internal representations because their focus
was on the misperception of natural speech categories in accordance with the categories in the learning data,
rather than discriminating stimuli with arbitrary categories that may not naturally occur, as in the human
experiment of interest (Kingston et al., 2008).

2 Background

2.1 Integrated Perceptual Properties Rather than perceiving cues such as fundamental frequency (f0),
voicing duration, and formant values independently, humans are thought to also perceive auditorily similar
acoustic properties as integrated into combined, abstract auditory dimensions called Integrated Perceptual
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Properties (IPPs) (Kingston et al., 2008). The integration of cues into an IPP is not categorical, but
instead gradient based on the degree to which the cues can be perceived separately. As a case study, I
tested convolutional neural networks for exhibiting behavior characteristic to an IPP relevant to stop voicing
contrasts: spectral continuity, which refers to the lack of an abrupt change in the spectrum over time. Voiced
stops tend to have higher spectral continuity across their closure onset than voiceless stops (Kingston et al.,
2008). A stop closure results in a change from a high-energy preceding vowel to a timespan of mostly
silence, with higher frequencies filtered out by the obstruction (Lisker, 1957). However, this change is less
dramatic if voicing persists through the closure, which tends to occur for stops phonologically categorized
as [voiced] (Figure 3). The duration of voicing during the closure thus contributes to the percept of spectral
continuity. Spectral continuity is also enhanced if the low-frequency energy of the closure voice bar (Hogan
& Rozsypal, 1980) is preceded by a low first formant (F1) at the offset of the preceding vowel. Additionally, a
lower vowel offset fundamental frequency (fO) contributes to spectral continuity because fO tends to be lower
during closure voicing (Kingston et al., 2008). Figure 1 shows example tokens of a high-spectral-continuity
voiced stop and low-spectral-continuity voiceless stop.
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Figure 1: Left: a spectrogram of a voiced English stop with an offset F1 (indicated by a white line) of 480Hz.
Right: a spectrogram of a voiceless stop with an offset F1 (indicated by a white line) of 550Hz. The closure
onsets are marked by a dashed line, and closure voicing duration is marked by a solid horizontal line. These
tokens were collected by (MIT, 2005).

If cues contribute to the same IPP, then they will not be perceived independently of one another, referred
to as perceptual integration (Kingston et al., 2008). Perceptual integration for a pair of cues can be diagnosed
with the Garner paradigm (Garner, 1953), which tests the perceptual distances between four stimuli that
are constructed with all of the logically possible combinations of high versus low values of each cue. For
example, if we were testing for the perceptual integration of F1 and voicing duration during the closure, our
four stimuli would consist of sounds synthesized to have a vowel-stop-vowel (VCV) sequence with one of
these combinations of acoustic properties: high F1 and long voicing, high F1 and short voicing, low F1 and
long voicing, or low F1 and short voicing (Fig. 4). The physical distances between each pair of stimuli can
thus be described in terms of how many cues they differ on. The perceptual distance between each pair of
cues is estimated with a discrimination task (Kingston et al., 2008).

If the cues are perceived independently, the relative perceptual distances will be proportional to the
physical distances. However, if the two cues are not perceived independently, the perceptual distances will
be warped from the physical ones; two pairs of stimuli might differ on the same cues, but one pair might be
further apart than another based on their values. For example, for F1 and voicing in Fig. 2, the pair High/Short
vs Low/Long differs on the same number of cues as High/Long vs Low/Short. However, High/Short and
Low/Long are perceptually further apart. In other words, the perceptual space is stretched along a diagonal
dimension that is a combination of the F1 and voicing duration dimensions. This dimension corresponds
with spectral continuity; High/Short corresponds with low spectral continuity, and Low/Long corresponds
with high spectral continuity. Pairs of cues that covary in speech but do not contribute to the IPP can be tested
as a control (Kingston et al., 2008). Table 1 summarizes the pairs of cues investigated in this paper for the
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comparison between model and human perceptual representations.

Cue Pair Human Behavior
F1 and closure voicing | Integrated
f0 and closure voicing Integrated

F1 and closure duration
f0 and closure duration

Not integrated
Not integrated

Table 1: Summary of human results found by Kingston et al (2008). Cues enhancing “spectral continuity”
are shown in italics.
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Figure 2: Schematic of the Garner paradigm showing perceptual integration of F1 and closure voicing,
adapted from Kingston et al. (2008). Each box represents a stimulus, which is a sound consisting of a vowel-
stop-vowel sequence.

2.2 Contrast Shift Yang (2019) proposed that IPPs aid in explaining the asymmetries in the cross-
linguistic frequency of contrast shifts in a typological and experimental study. Yang found that participants’
cue reweighting ability was enhanced when the cue values corresponded to an IPP and concluded that this
synchronic cue reweighting preference is related to the typological observation that diachronic contrast shifts
are more common between cues that contribute to the same IPP.

Yang focused on the cues of voicing, breathiness, pitch, and vowel duration. Voicing, breathiness, and
low pitch are hypothesized to enhance the IPP “energy at low frequencies;” breathiness contributes to this
IPP because it is characterized by more energy on the first harmonic than higher harmonics. Vowel duration
also tends to coincide with these cues, but there is no known shared IPP auditory effect that they contribute to.
In a cross-linguistic survey of consonant contrasts involving these cues, Yang (2019) found that the contrast
shifts were much more frequent between the cues that enhance the same IPP (voicing, breathiness, pitch)
and almost never occurred between between the cues that covary but do not enhance the same IPP (vowel
duration and pitch).

Yang (2019) thus proposed a potential mechanism by which IPPs influence contrast shift: experimental
participants’ ability to change their cue weighting for two artificial categories depends on where the cue values
fall on IPP dimensions. Participants received extensive training in an initial phase where the categories were
better separated by one cue, then encountered another phase where the more informative cue was switched.
Yang (2019) manipulated whether the particular cue values were enhancing, falling along the IPP dimension,
or non-enhancing, falling perpendicular to the IPP dimension (Fig. 2). Participants were not able to adapt to
the cue change if the values opposed the IPP dimension. Yang (2019) thus proposed participants’ preference
for IPPs in changing cues is related to IPP cues’ frequency in diachronic contrast shifts. However, this account
remains to be computationally implemented.
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2.3 Neural Network Model 1 propose the application of a neural network model of sound change to
the task of implementing Yang (2019)’s account and took the first step of evaluating the behavior of its
speech perception component. A neural network maps input vectors to output vectors with multiple layers
of weighted sums and nonlinear functions, such as the logistic function (Ito, 1991). It learns by adjusting
its weights to optimize its performance on training data (examples of input-output pairs), specifically by
minimizing a loss function with one of the many forms of gradient descent (Ruder, 2017). An existing neural
network model of sound change (Begus, 2020) uses learners that are each implemented with a Generative
Adversarial Network, where the “discriminator” is roughly analogous to a speech perception component.
This component is implemented with a Convolutional Neural Network (CNN), the type of neural network
probed in this paper. A CNN does not require predefined cue measurements as its input, but rather detects
patterns directly from the raw audio waveform. This detection of patterns, as opposed to simply weighing and
transforming different measurements taken by phoneticians for different cues, has the potential to model how
properties of the signal we would measure separately (e.g. low voicing duration and F1) may be captured by
a single dimension in the auditory system.

CNNs make use of pattern detectors called filters to process their inputs (O’Shea & Nash, 2015). A filter
is a vector of numbers that is compared to each section of the input; the more similar they are, the greater the
filter’s output is for that section. When the filter closely matches the region of the input, there is a larger value
in the corresponding region of the output. A dot product is computed between the filter and each section of
the input. Crucially, the result of the dot product tends to be higher if the two vectors (in this case, the filter
and a region of the input) are more similar; in other words, the result is greater if the input region matches
the filter’s pattern (O’Shea & Nash, 2015). Figure 3 shows a step-by-step calculation of how a filter’s output
is produced by computing dot products at different regions of the input. A CNN makes use of many of
these filters to detect many different patterns, and it also feeds the results as inputs into more layers of filters,
allowing the for detection of longer, higher-level patterns (O’Shea & Nash, 2015).

Waveform Filter
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Figure 3: Step-by-step calculation of the output for a toy input signal and filter. The output of the [0.01, 1]
filter is greatest at the [0.03, 0.8] region of the input.

The properties of CNN filters provide reason to expect that they might provide a model of cues integrated
into the same auditory dimension, like an IPP. The filters simply detect patterns in regions of the input, so
CNNs are not constrained to learning separate sets of filters for independently detecting acoustic measures
such as a vowel offset F1 and voicing. Instead, a CNN could potentially learn a shared set of filters
representing the pattern of a low F1 adjacent to substantial closure voicing. Because the cues in an IPP
contribute to the same abstract effect, such as spectral continuity, it is not unimaginable that a CNN would
learn a shared filter for cues that are in the same IPP, while learning separate, independent filters for pairs
of cues that have no such qualitative similarity, such as a low F1 and closure duration. To visualize this
distinction between shared and independent filters, Figure 4 shows a hypothetical example for the sounds
in Figure 3. The CNN that I probed had the task of categorizing English stops as voiced or voiceless (as
discussed in Section 4.1). A sound token’s vowel F1, closure voicing duration, and closure duration all help
indicate a stop’s category, so we could expect the CNN to detect these values in some way. However, out
of these cues, only a low F1 and voicing duration contribute to the qualitative pattern of spectral continuity.

4



Cerys Hughes Probing a Neural Network Model of Sound Change for Perceptual Integration

As voiced stops tend to have higher spectral continuity, this pattern provides information about whether a
token is voiced or voiceless. We would thus expect the CNN to use each of the cues, but only integrate F1
and voicing. However, the complex learning and network structure make it extremely difficult to predict the
CNN’s behavior, motivating an empirical test.

i

I

il
i

i
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Figure 4: Rough schematic of potential types of filter a CNN would learn in categorizing voiced versus
voiceless stops. If the CNN captured human-like IPP behavior, it would learn the spectral continuity filter
(perhaps in addition to the F1 and voicing filters). If not, it would learn only the voicing and F1 filters.

3 Experimental Design

Using spectral continuity as a case study, I asked whether CNNs exhibit IPP-like representations, a
prerequisite of implementing Yang (2019)’s account. Specifically, do they integrate pairs of cues in the
same way that humans do, as found in Kingston et al. (2008)’s spectral continuity experiments? In order
to test whether CNNs represent sounds with human-like IPPs, I adapted the Garner paradigm to CNNs.
Because the CNN only outputs a probability of voiced vs voiceless category membership, and not all the
stimuli in the Garner paradigm are designed to fall into those categories,> the CNN is not compatible
with the discrimination task used to estimate humans’ perceptual distances. Instead, following a visual
perception study by Ward (2019), I calculated CNNs’ perceptual distance between a pair of stimuli by
extracting the network’s representation for each stimulus and then computing the distance between them.
These representations are the activations (weighted sum values) at the last layer of the network when the
stimulus is input to the network, so they are just vectors of numbers. The distance between them could
thus be calculated with cosine distance, which is proportional to the angle between them. These perceptual
distances could then be interpreted as described for human perceptual distances; CNNs representing spectral
continuity would be supported by perceptual warping along the IPP direction when both cues contribute to
spectral continuity.

I tested two complementary, opposing hypotheses: 1) The CNN will exhibit the same pattern of human-
like integration as shown in Table 1. This outcome is predicted by the CNN learning to represent the input
with IPP-like sets of filters. 2) The CNN will exhibit a different, non-human-like pattern of integration from
that shown in Table 1. This outcome is predicted by the CNN learning to represent the input without IPP-like
sets of filters.

Each hypothesis is composite; to determine whether each cell in Table 1 is integrated or not, I had to
determine whether there is a significant difference between the distances along each diagonal across the
different random seed starting states. In addition, I tested for the direction of the difference; if the CNNs
exhibit IPPs, then the distances will be longer along the IPP diagonal and not the opposite direction for the
pairs of cues that contribute to the same IPP.

2 Burridge & Vaux (2022) also apply a human experimental paradigm to a speech processing CNN, but their focus was
on misperception of natural speech rather than discriminating arbitrary stimuli; they probed the output of their network
rather than the internal representations.
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4 Method

4.1 Model 1replicated the CNN architecture of the discriminator component of Donahue et al. (2019),
which forms the speech perception component of Begu$’ (2020) sound change model. However, because
I isolated this component from the rest of the model where its function was to compare the learner’s
outputs to the previous generation’s speech, it required a different training task. I defined this to be the
simple classification of English stops (in vowel-stop-vowel tokens) as voiced or voiceless. Additional
implementation differences from Donahue et al. (2019) were removing phase shuffling (which was only
relevant for the original comparison task) and reducing the audio input size, as Donahue et al.’s (2019
code was written for longer audio sequences than VCV tokens. I represented the voiced-vs-voiceless
categorization with a one-hot vector (simply meaning 01 represents voiced and 10 represents voiceless)
and had a softmax activation function on the final layer of the network so it could be interpreted as a
probability distribution over whether the input is voiced or voiceless. The layer used for the extraction
of internal representations was the second to last, where the nodes are flattened into one dimension. The
code for the model, as well as the input data preprocessing involved in this experiment, is available at
https://github.com/ceryshughes/CNN_Integration.

4.2 Training data Because my question was not about the characteristics of the input data but instead
about the properties of the model and the structure of its internal representations, I controlled the input by
synthesizing it with the Klatt synthesizer implementation in Praat (Klatt & Klatt, 1990 and Boersma, 2006).
Synthesizing the training data allowed me to exclude any possible cues other than the ones of interest that
might occur in a sample of natural speech. Each training token consisted of a sequence of a vowel, stop, and
vowel (VCV) such as /ibi/ or /ipi/. There were 500 training tokens of voiced stops and 500 training tokens of
voiceless stops.

Even though the training tokens are synthesized, I set the synthesis parameters based on 321 real English
vowel-stop-vowel productions collected in a 1ab by the MIT Speech Communication Group with three English
speakers, one female and two male (2003). This experiment was conducted on specifically English stops to
remain consistent with the human results under comparison, which involved English speakers (Kingston
et al., 2008). I extracted fO and F1 values both during the steady state portion of the vowel and right before
the stop closure. I also extracted closure duration and voicing duration. I used the voiced and voiceless
distributions from this real speech data to guide the random sampling of measurements for voiced and
voiceless synthesized tokens; this way, I could to some extent mimic the distributions of the cues of interest
without the noise and potential confounds in the natural speech productions. For each training datum, I
synthesized the offset f0, offset F1, and closure voicing of one of the natural tokens, 3 with a small amount
of Gaussian noise added so the tokens were not identical. The small sample of speakers in (MIT, 2005) did
not reliably use closure duration as a cue, so I sampled the closure duration values from separate Gaussian
distributions for voiced and voiceless tokens. All other synthesis parameters were held constant across all
tokens.

4.3 Training and Experimental Procedure 1 trained each random seed version of the model for 10
epochs; each epoch consists of an exposure to all training examples. This number of epochs was chosen
because by this point, the preliminary models all achieved over 95% accuracy on the training data. Otherwise,
I followed Donahue et al.’s (2019) training procedure with Stochastic Gradient Descent, the Adam optimizer,
mini batches, batch normalization, and gradient clipping. The experimental stimuli were replicated from
Kingston et al. (2008) so that the CNN results would be comparable to the human results. The pairs of cues
I investigated are those included in Table 1. To be more certain of the model’s behavior in general (Corkery
et al., 2019), I repeat the experiment (training a model and extracting its perceptual distances for the Garner
paradigm) with 70 different random seeds, which determine the weight initializations.

3 Frequency measurements used Praat’s pitch tracker (Boersma, 2006) through the Parselmouth package (Jadoul et al.,
2018).
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5 Results

Figure 5 shows the perceptual distances between stimuli for each cue pair, contrasting the distances
along the spectral continuity IPP dimension or, for closure duration, co-occurrence in the input (the “natural”
dimension”) and the opposite, mismatched, perpendicular dimension (the “mismatch” dimension). The
overlap between distances for fOxvoicing and F1 x voicing would suggest a lack of integration. Surprisingly,
given the human results and hypothesized IPP, the lack of overlap for fOxduration and F1 xduration would

suggest integration between these cue pairs.
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Figure 5: The CNN perceptual distances for each diagonal in the Garner paradigm and for each pair of cues
tested.

For each cue pair, I fit a mixed effects linear regression model with R’s Ime4 (Bates, 2010) and ImerTest
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(Kuznetsova et al., 2017) package to test whether stimuli are further apart along the combined, diagonal
dimension that corresponds with an IPP or co-occurrence in the input (the “natural” dimension”). Following
Kingston et al. (2008), I tested whether the perceptual distances along this diagonal are larger than the
perceptual distances along the opposite, mismatched diagonal (Figure 2). The linear regression fits cosine
distance (analogous to human perceptual distance) as a function of whether the stimuli fall on the “natural”
dimension or the “mismatch” dimension. In other words, I tested whether the “natural” distance is larger
than the “mismatch” distance on average, averaging over different random seed versions of the CNN. I also
allowed the intercept to vary by random seed to account for differences in their baseline distance values (e.g.
in case some random seed versions tend to have larger overall distances). In Imer notation, the regression fits
(1) below.

@) distance ~ dimension.type +(1]|Seed)

where contrasts were defined for dimension.type as -0.5 for mismatch and 0.5 for natural. A significantly
larger distance along the natural dimension, and thus integration, was found for fO x duration and F1 x duration
(p < 0.001). A more weakly significant difference was found for F1 xvoicing (p = 0.0305), but in the wrong
dimension; stimuli are closer, not further apart, along the IPP diagonal than the opposite diagonal. The
contrast with human behavior for one of these cue pairs, F1 xvoicing, is visualized in a Garner paradigm
in Figure 6, which shows a perceptual stretching along the IPP dimension for humans but not the CNN. In
summary, the network does not integrate the cue pairs in the same way that humans do.

Human CNN
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Figure 6: Visual interpretation of human and CNN perceptual spaces for one pair of cues, fO and closure
voicing.

6 Discussion and Conclusion

Given that the CNN does not exhibit the same perceptual integration behavior as humans, these results
highlight a property of CNNs to be aware of when using them in models of speech. This property is an
issue with using them to model Yang (2019)’s account as part of a larger neural network of sound change,
indicating a direction for further research on their modification or replacement for this specific purpose. The
near inverse of human-like perceptual integration behavior raises several puzzling questions about the CNN’s
representation of input sounds. For example, for fO and closure duration, the CNN considers the mismatched
stimuli more distant from each other, indicating it does not perceive these cues independently and perhaps
has an auditory dimension corresponding to the mismatched diagonal dimension. Why would the CNN form
this representation when the data it was exposed to during training followed the opposite pattern? Because its
training task was to separate stops as voiced or voiceless, we could imagine error would be reduced more if
the representations reflected the cue values voiced and voiceless stops actually differ on, making the network
more likely to develop weights for these representations. Furthermore, F1 and closure duration was the only
cue pairing the CNN integrated in accordance with the voiced/voiceless cue value pattern. Humans do not
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integrate this pair of cues as they do not contribute to the same IPP, spectral continuity (Kingston et al.,
2008). Perhaps CNNs’ integration of cues is not driven by the joint qualitative effect of spectral continuity,
but solely by the frequency of co-occurrence of cue values with each other or the categories to be learned. In
designing the training data, the closure duration distribution was artificially set to be very different for voiced
and voiceless stops, perhaps motivating its integration with other voiced vs voiceless cues even if it does not
contribute to spectral continuity.

Although the properties of CNNs suggest they might integrate cues like humans do and provide a model
of IPPs, this empirical test of their actual behavior did not support that hypothesis, at least given the particular
hyperparameters (filter size and number of filters, number of layers, training procedure, etc.) examined here
based on a component of Begus’ (2020) sound change model. Future work should continue the investigations
further with other probing methods, such as examining feature maps (the outputs of filters for a given input,
e.g. Begu$ & Zhou, 2022), and examining the representations at different layers of the network. Even so,
these results indicate that the task of formalizing and simulating Yang (2019)’s proposed IPP bias on contrast
shift remains. Although building particular filters explicitly into a network is not common practice for CNNZs,
one possible standard modification to CNNs that might induce IPP-like behavior is pooling. Pooling applies
some operation, such as summing or averaging, to the output of a filter over multiple regions of the input; for
example, in the computer vision literature, Babenko & Lempitsky (2015) find that sum pooling is beneficial
for aggregating features of images. For the spectral continuity cue, voiced stops (higher spectral continuity)
may have a larger total sum of low-frequency energy before and after the closure than voiceless stops (lower
spectral continuity).

In this paper, I have piloted a novel approach to better understanding neural network speech models by
adapting the Garner paradigm to the internal representations of Convolutional Neural Networks (CNNs).
Using this methodology, I explored CNNs’ viability as a model of the combined auditory dimensions
as part of an implementation of Yang (2019)’s proposal that Integrated Perceptual Properties (IPPs) bias
which contrast shifts occur. I did not find support for CNNs exhibiting human-like behavior with regard to
spectral continuity, highlighting the need for further research in formalizing and simulating accounts of IPPs’
influence on contrast shift.
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