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1 Introduction 

Grammars and statistical models may suffer from two opposite problems: not capturing the training data 

accurately (underfitting), and fitting the training data too closely, resulting in a failure to generalize to new 

unseen data (overfitting). The challenge when modelling a phonological pattern is to capture the training data 

accurately while maintaining the ability to generalize. Lexically-specific mechanisms like indexed 

constraints (Pater 2000) and cophonologies (Inkelas and Zoll 2007) are designed to allow the grammar to 

better capture the intricacies of a dataset that involves phonologically unexplainable differences between 

morphemes. The question addressed here is: will giving the grammar the power to encode phonological 

patterns on a morpheme-by-morpheme basis hurt its ability to generalize? We will show that, at least for the 

case study addressed here, it does not. 

We focus on the case of French schwa deletion (§2), an optional process whose rate of application is 

modulated by both phonological and lexical factors. Each word has its own rate of deletion, which means 

that an indexed constraint grammar could heavily rely on indexed constraints over general phonological 

constraints, hampering its ability to generalize to novel words. In fact, constraint indexation theoretically 

allows patterns to be stored for every individual lexical item. It might turn out that there is little work left to 

do for the non-indexed constraints, which will cause generalization to suffer. Thus, adding indexed 

constraints to the grammar could lead to significant overfitting, but not adding indexed constraints would 

lead to underfitting, as the lexical factors are not taken into account. Is a balance between lexical factors and 

generalizability possible? 

We tested the trade-off between overfitting and underfitting by comparing various Maximum Entropy 

(MaxEnt; Goldwater & Johnson 2003) grammar learners: one that only assigns weights to non-indexed, 

lexicon-wide constraints, and three novel learners that induce lexically indexed constraints and weight them 

alongside their non-indexed counterparts. These four learners were trained on probabilities of French schwa 

deletion within words (taken from the experimental results in Racine 2008), and then tested on a completely 

different dataset: probabilities of French schwa at word boundaries (taken from the experimental results of 

Smith & Pater 2020). This allows us to test both underfitting (how well does the grammar capture the data in 

the corpus?) and overfitting (how well does the grammar generalize to the new dataset?). We find that adding 

indexed constraints indeed does decrease underfitting, while most indexed constraint learners do well on 

generalizing to the new dataset, and the best indexed constraint learners do not increase overfitting. 

The rest of this paper is organized as follows: §2 will present French schwa deletion, including both 

datasets (training and testing); §3 will present the indexed constraint learners that we propose in this paper; 

§4 will describe how the learners were applied to the training data and the results of this, while §5 will 

describe the generalization to the test data. Finally, §6 will offer some discussion and our concluding remarks.  

2  French schwa deletion 

We apply our indexed constraint induction learners, which will be described in more detail in §3, to the 
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well-known case of deletion of schwa in French (see, e.g., Dell 1985), a phonological process whose rate of 

application is conditioned by phonological context (see, e.g., Racine 2008, Smith & Pater 2020 for a review). 

Schwa deletion is a good test case because it is both optional and lexically-conditioned. The examples in (1a) 

demonstrate optionality: probabilistic process application, where rate of application depends on context, 

while the examples in (1b) demonstrate lexical-conditioning: application rates differ between words, even 

when controlling for phonological conditioning. 

 

(1) a. deletion is optional 

 /la səmɛn/ → [lasmɛn, lasəmɛn] ‘the week’ (Dell 1985) 

 b. probability of deletion depends on specific word 

 /səme/ → [səme], *[sme] ‘to sow’      /səmaj/ → [səmaj, smaj] ‘sowing’ (Dell 1985) 

 /səmestʁ/ → [smestʁ] ‘semester’ less likely than /səmɛn/ → [smɛn] ‘week’ (Racine’s 2008 data) 

  

These properties make the French case ideal for testing a probabilistic learner that builds a grammar with 

indexed constraints: the learner should be able to capture the data it is trained on, including lexical 

conditioning, while also being able to generalize the patterns therein to novel words. To achieve this, we train 

the learner described in §3 on a dataset taken from Racine (2008), and then test the resulting grammars both 

on this dataset and on experimental results taken from Smith & Pater (2020). We will describe both datasets, 

including their embedding in the grammar, in §2.1 and §2.2, respectively.  

 Before discussing the dataset, we will go through the phonological conditions known to govern French 

schwa deletion, and we model the dataset and the constraints that enforce them. We will focus on morpheme-

internal schwas, since schwas at morpheme boundaries are often analyzed as epenthetic (e.g., Dell 1985, Côté 

2000; see Smith & Pater 2020 for an overview). 

 The surrounding segmental context is known to have an effect on the probability of schwa deletion 

(Dell 1985, Côté 2000, Racine 2008). Firstly, if schwa deletion leads to a three-consonant cluster, this is less 

likely than if it leads to a two-consonant cluster, as in (2a). Furthermore, among examples where three-

consonant clusters as a result of schwa deletion are acceptable, the likelihood of deletion is modulated by the 

sonority of the consonants. For instance, as pointed out by Côté (2000) and Kaplan (2011), clusters whose 

medial member is most sonorous are avoided, as in (2b), and clusters that end in a stop followed by a non-

approximant (= a nasal or an obstruent) are also avoided to an extent, as in (2c).  

 Finally, Dell (1985) reports that among cases where deletion yields two-consonant clusters, the schwa 

deletion rate is lower if this is a word-initial cluster as opposed to a word-medial cluster, as in (2d), where 

the schwa in /avəniʁ/ may not be deleted. In fact, Dell’s analysis posits that schwa deletion is obligatory in 

within-word VC_ environments and optional in V#C_ environments. 

 Schwa deletion is also conditioned by prosodic factors (Dell 1985): there is more deletion when schwa 

is followed by multiple syllables in the phrase compared to when it is followed by just one syllable; see (2e). 

 

(2) a. less deletion when it leads to CCC (examples from Dell 1985) 

  /mɑ̃ʒ lə ɡato/ →    [mɑ̃ʒləɡato], *[mɑ̃ʒlɡato]  ‘eat (sg.) the cake’   

 /mɑ̃ʒe lə ɡato/ →   [mɑ̃ʒeləɡato, mɑ̃ʒelɡato]   ‘eat (pl.) the cake’ 

 b. less deletion when resulting CCC cluster has highest sonority in the middle (ex.: Côté 2000) 

 /ɑ̃vi də tə lə dəmɑ̃de/ →  *[ɑ̃vidətldəmɑ̃de]    ‘feel like asking you’  

 /ɑ̃vi də tə lə dəmɑ̃de/ →  [ɑ̃vidtlədəmɑ̃de]    ‘feel like asking you’ 

 c. less deletion when resulting CCC cluster ends in a stop then a non-approximant (Côté 2000) 

 /ɑ̃vi də tə lə dəmɑ̃de/ →  ??[ɑ̃vidətəldmɑ̃de]    ‘feel like asking you’   

 /ɑ̃vi də tə lə dəmɑ̃de/ →  [ɑ̃vidtlədəmɑ̃de]     ‘feel like asking you’ 

 d. less deletion when resulting cluster is word-initial (examples from Dell 1985) 

 /la səmɛn/ →    [la#səmɛn, la#smɛn]   ‘the week’ 

 /avəniʁ/ →     *[avəniʁ], [avniʁ]   ‘future’ 

 e. less deletion when schwa is in penult position in the phrase (examples from Dell 1985) 

 /la tɛʁ sə vɑ̃/ →    [latɛʁsəvɑ̃], *[latɛʁsvɑ̃]  ‘the land is selling’   

 /la tɛʁ sə vɑ̃ bjɛ/̃ →  [latɛʁsəvɑ̃bjɛ,̃ latɛʁsvɑ̃bjɛ]̃  ‘the land is selling well’ 

 

To capture these generalizations and model deletion we use the constraint set in (3). The constraints *ə and 
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MAX are used to drive and prevent deletion, respectively (as in Smith & Pater 2020). Differences between 

their relative weights can capture different baseline deletion rates between words. *CCC captures the fact 

that deletion is less likely when it results in a three-consonant cluster (2a). The constraints *CNC and *CTN 

(from Kaplan 2011, based on Côté 2000) are motivated by the observation that these types of three-consonant 

clusters are particularly avoided as the outcome of schwa deletion, as in (2b,c). *#CC captures the relative 

dispreference for schwa deletion that leads to a word-initial cluster, as in (2d). Finally, the [ə]→penult 

constraint, which penalizes schwa outside of the penultimate syllable position, is motivated by the 

observation that schwa is deleted less often (and thus, tolerated more often) in penultimate syllables, (2e). 

 

(3) Constraint set 

 *ə: One violation mark for every instance of [ə]. 

 MAX: One violation mark for every deleted segment. 

 *CCC: One violation for every sequence of three consonants (Cs). 

 *CNC: One violation for every sequence of three Cs, in which the middle one is the most sonorant. 

 *CTN: One violation for every sequence of a C, then a plosive (=T), then a nasal or obstruent (=N). 

 *#CC: One violation for every word-initial consonant cluster. 

 [ə]→penult (=ə→PU): One violation mark for every instance of [ə] in a non-penultimate syllable. 

 

2.1    Training data    Our training data come from Racine’s (2008) rating experiments, in which participants 

rated schwa-ful and schwa-less pronunciations for 2112 French words (all nouns). The schwa-ful and schwa-

less versions of these words were presented orthographically, and participants estimated the frequency of 

pronunciation on a 1-7 scale. Since MaxEnt grammars need counts or probabilities as inputs, we used the 

averaged ratings to estimate probability of schwa pronunciation for each word. Racine’s study included both 

Swiss French and France French speakers, and we only consider data from the France French speakers here. 

We transformed ratings into probabilities by subtracting 1 from each averaged rating (so the lowest score is 

0), and then dividing each adjusted rating by the sum of adjusted ratings for both variants of the word, as in 

(2). For instance, for the word /səmɛstʁ/ ‘semester’, the schwaless variant [smɛstʁ] has an averaged rating of 

1.92, while the faithful variant [səmɛstʁ] has a rating of 6.50. The adjusted ratings are 0.92 and 5.50, 

respectively, and the resulting probability of [smɛstʁ] is 0.92/(0.92+5.50) = 0.14 = 14%. If both variants of a 

word have equal ratings, they will each have a probability of 50%, while if one variant has a rating of 7 and 

the other has one of 5, or if one variant is rated 4 and the other, 3, this would yield a 60% probability for the 

higher-rated word: 6/(6+4) = 3/(3+2) = 0.6 = 60%. 

 

(4) Transformation from ratings to estimated probabilities. 

 𝑃(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒) =
𝑅𝑎𝑡𝑖𝑛𝑔(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒)−1

𝑅𝑎𝑡𝑖𝑛𝑔(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒)−1+𝑅𝑎𝑡𝑖𝑛𝑔(𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒)−1 

 

Of the words in the experiment, we excluded words with potential word-internal morpheme boundaries (to 

exclude any influence of morphological structure; for instance, we cannot assume that schwa at a boundary 

is underlying, see above) and words that were not transcribed as having variable schwa but were tested 

because the orthographic symbol for schwa, <e> in an open syllable, is present in their spelling (e.g., 

<casserole> /kasʁɔl/ ‘pot’). In terms of morpheme boundaries, we removed words containing a dash (which 

indicates compound words) and those ending in <-té>, <-rie>, <-ment>, or <-mentation>. This procedure 

yielded 456 of the original 2112 words. We made these into OT-style tableaux with each word as an input 

and two candidates per input: a faithful candidate and a candidate with the schwa removed (e.g., /səmɛstʁ/ 

→ <[səmɛstʁ], [smɛstʁ]>). Each tableau contains the seven non-indexed constraints shown in (3). These data 

will be used as training data in the simulations described in §4. 

 

2.2    Generalization data    Our trained grammars were further tested using data from Smith & Pater 

(2020), who studied phonological conditions on the presence or absence of schwa for both underlying and 

epenthetic schwas. We use the schwa deletion contexts from Smith & Pater, which consist of a C- or V-final 

word followed by the clitic /tə/ ‘you’, followed by a CVC or a CVCV word, as in (5). 
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(5) V-final + CVC:    [eva t(ə) ˈʃɔk] ‘Eva shocks you’ 

  V-final + CVCV:  [eva t(ə) ʃɔˈkɛ] ‘Eva shocked you’ 

 C-final + CVC:  [moris t(ə) ˈsit] ‘Maurice cites you’ 

 C-final + CVCV: [moris t(ə) siˈtɛ] ‘Maurice cited you’ 

 

In Smith & Pater’s experiment, French native speakers from France were asked to choose between two 

versions of the same phrase, with and without schwa. The stimuli were presented orthographically, with 

unpronounced schwa represented with an apostrophe, e.g., Eva t’choque (an orthographic representation of 

the first example in (5)). Statistical analysis found that, as expected, schwa is more likely to be pronounced 

when its absence would create a CCC cluster (C-final condition) and when the schwa is in a syllable that 

precedes a final stressed syllable (CVC condition). These trends are also visible in the proportions of no 

deletion choices within the schwa deletion condition results, illustrated in Table 1. When we test our learner’s 

capacity to find generalizable grammars with indexed constraints, we aim to match these probabilities with 

the grammars - see §5 of this paper. 

 

Table 1. Proportions of schwa retention choices among all schwa deletion trials. 

Context V-final + CVC V-final + CVCV C-final + CVC C-final + CVCV 

Schwa retention 65% 56% 94% 91% 

 

 What makes these data so ideal for testing generalization of indexed constraint grammars is that, despite 

the preceding and following context consisting of various actual words, these words contain no schwa 

themselves, while the word that contains schwa is always the clitic /tə/, so that, whichever lexical factors may 

influence the realization of schwa in this word, these are constant between the conditions in Table 1, and the 

difference between these conditions is made by contextual factors. 

3  Learner 

Our learning proposal builds on existing learners that expand OT grammars with indexed (lexically-

specific; see Kraska-Szlenk 1995, Pater 2000) constraints (Pater 2007, 2010, Becker 2009, Round 2017, 

Nazarov 2021). These existing learners start with a set of pre-specified unranked OT constraints and a dataset 

including attested and unattested candidates. While the constraints are being ranked, the learner creates new 

indexed constraints based on the pre-specified constraints as needed and includes these in the ranking. These 

learners also find which lexical items (Becker 2009) or underlying segments (Round 2017, Nazarov 2021) 

should be indexed to each indexed constraint. However, these existing proposals are intrinsically connected 

to Constraint Demotion (Tesar 1995) approaches to learning, which require non-probabilistic OT and cannot 

deal with variation. This is a problem for cases like French schwa deletion (§2), in which lexical differences 

lie in rates of variation between retention and deletion of underlying schwa. 

In this paper, we propose several extensions of these approaches in the well-known Maximum Entropy 

framework (MaxEnt; e.g., Goldwater & Johnson 2003), which can easily deal with variation. Moreover, 

MaxEnt is compatible with various types of general-purpose optimization, since it is a type of regression 

model (Manning & Schütze 1999). We will first review the mechanics of the previous approaches in §3.1, 

and then explore the details of our proposal for indexation in MaxEnt in §3.2. Finally, two ways in which 

indexed constraints can be generalized to novel inputs are described in §3.3. 

 
3.1    Contrast as a trigger    The existing approaches (Becker 2009 and others) are based on the idea that 

indexed constraints are needed whenever the pre-specified constraints are insufficient to account for the 

contrasts in the data. In Constraint Demotion approaches, this situation is signaled by so-called inconsistency 

detection. Inconsistency occurs when different data points require mutually exclusive rankings, for instance, 

if one data point (winner-loser pair), /səmɛn/ → <[smɛn], *[səmɛn]>, requires *ə >> MAX while another, 

/səmɛstʁ/ → <[səmɛstʁ], * [smɛstʁ]>, requires MAX >> *ə. This can be seen as a case of irreducible contrast: 

there is nothing in the phonological grammar that can make the difference between the two data points (schwa 

deletion versus schwa retention), so there must be contrast between two inputs as to their schwa deletion 

status. Whenever this occurs, the existing algorithms add an indexed version of one of the constraints 
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involved in the inconsistency, and ensure that only the data points that require a high ranking of this constraint 

are indexed to it. For instance, in the MAX versus *ə case, /səmɛstʁ/ may be indexed to a newly formed 

indexed constraint MAXi, so it will not undergo schwa deletion, and the ranking MAXi >> *ə >> MAX may 

be established, which leads to schwa retention in the word indexed i, but schwa deletion otherwise. 

 

3.2    Extension to MaxEnt    The categorical approach in Becker (2009) and others does not work well 

with variation. In fact, if a single input has two winning outputs, this also leads to inconsistency detection: 

/səmɛn/ → <[smɛn], *[səmɛn]> requires *ə >> MAX while /səmɛn/ → <[səmɛn], *[smɛn]> requires MAX >> 

*ə. Furthermore, inconsistency detection is a part of a custom-built learner for categorical OT grammars and 

cannot easily be extended to more general-purpose learners. To tackle both issues, we propose here an 

extension of the existing approaches to MaxEnt.  

Instead of using inconsistency detection in ranked constraint grammars, we propose that contrast, and 

therefore indexed constraints, can be found by looking at the weights of a MaxEnt grammar and their 

gradients (the degree to by which increasing or decreasing the weight would improve the fit to the dataset or 

a given data point; informally, the degree to which the weight “wants” to be raised or lowered). If a constraint 

has a positive gradient value (↑) for some inputs and a negative gradient value (↓) for some other inputs, 

we can see this as a form of contrast, since there are inputs that want a higher weighting for a constraint (e.g. 

/səmɛn/ for MAX), and other inputs that want a lower weighting for the same constraint (e.g. /səmɛstʁ/ for 

MAX). Of course, this does not give us a firm conclusion on whether this leads to mutually exclusive 

rankings/weightings (like *ə >> MAX versus MAX >> *ə), cf. Nazarov (2018) on “soft inconsistency” in 

probabilistic ranking, but various approximations can be used to create MaxEnt grammars with indexed 

constraints. These approximations are of increasing sophistication (§3.3.1-3), and our learning simulations 

(§4,5) will show how these compare to one another in terms of performance. 

 

3.2.1    Pre-training indexation    Possibly the simplest way to approach gradient-based indexation is the 

following: it is assumed that each pre-existing constraint has exactly one indexed version, and before the 

weights of the MaxEnt model are trained on data, it is determined which inputs are connected to each indexed 

constraint. For each indexed constraint, its associated inputs are exactly those inputs that have a positive 

gradient on its non-indexed counterpart. Gradients are computer based the initial weighting of the constraints, 

in our case, 0 weight for all constraints. For instance, for the indexed version of MAX assumed by this 

algorithm, all inputs in which schwa retention is preferred (↑MAX) will be indexed to it. For our data, there 

were two candidates for every input: one with and one without a schwa in a designated place, e.g., /səmɛn/ 

→ <[smɛn], [səmɛn]>. Whenever the candidate preferred by a constraint for input X has more than 50% 

probability, this constraint will have a positive gradient for input X given 0 weights. For instance, if /səmɛstʁ/ 

has a >50% probability of being realized as [səmɛstʁ], then MAX will have a positive gradient for /səmɛstʁ/, 

and this input will be in the set of inputs indexed to MAXi. 

 In practice, this approach did not work very well, since many inputs had a distribution of schwa 

retention/deletion close to 50-50, and inputs that happened to have the slightest preference for retention or 

deletion were also assigned to the indexed versions of constraints, which led to a great amount of noise in 

the system. To give this simple pre-training indexation learner a better chance of success, we added a 

threshold requirement: only inputs with at least 60% probability for one of its candidates can be associated 

with and indexed constraint. For instance, for MAXi, /səmɛstʁ/ with only 14% schwa deletion is indexed to 

it, but not /səmɛn/ with 50% schwa deletion. The effectiveness of this approach will be considered in §4-5. 

 The advantage of this approach is its simplicity: it simply adds one indexed constraint for every pre-

existing non-indexed constraint, and it requires only one round of training the grammar weights. However, 

one major drawback is that interactions between constraints are not taken into account. For instance, in a 

word like /bʁəvɛ/ ‘patent, certificate’, schwa deletion practically never occurs (the estimated deletion rate is 

3% in the training data). This means that it will have a positive gradient for MAX and will be indexed to MAXi 

(which is indeed the case in our results for this learner), but this does not mean that the lower deletion rate 

has no phonological explanation: it can (at least partially) be explained by a high weighting of *CCC and 

*CNC (since deletion yields the cluster [bʁv], which contains three consonants, of which the middle one is 

the most sonorous). In other words, it is predicted that this approach will have a high false alarm rate for 

indexation, especially in context-insensitive constraints like MAX: there are independent phonological factors 

that could explain why /bʁəvɛ/ has a very low deletion rate, but these factors have no impact on whether this 
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input will be included in an exceptional high-weighted variant of the general anti-deletion constraint MAX. 

 To better deal with this aspect of indexation and only index inputs to indexed constraints if there is no 

purely phonological explanation for differences in indexation, we propose the post-training indexation 

learner, which waits until after the weights of the non-indexed constraints have been optimized to start 

inducing indexed constraints. 

 

3.2.2    Post-training indexation    In this “upgrade” of the pre-training learner, everything remains the 

same, except that gradients are computed after the weights of the pre-specified constraints have been 

optimized by training the grammar on the dataset: hence the name “post-training indexation”. For instance, 

the inputs indexed to MAXi are determined after the optimal weights of MAX and all other pre-specified 

constraints are found. As indicated at the end of the previous section, the goal of this is to more efficiently 

determine which inputs are indexed to which constraint. This is done by factoring out phonological 

influences: giving the pre-specified constraints their optimal weights allows for phonological effects to shape 

output candidate probabilities. For instance, by acknowledging that *CCC and *CNC have a relatively high 

weight, the very low schwa deletion rate in /bʁəvɛ/ can be accounted for without recourse to indexing it to 

higher-weighted MAXi. 

In this version of the algorithm, no thresholding function is used for determining which input goes with 

which indexed constraint: any input that has a positive gradient for a constraint (e.g., MAX) is connected to 

its indexed version (e.g., MAXi).  

After the weights of the pre-specified constraints are optimized and the violations of their indexed 

versions are determined (by finding which inputs are associated with each of them, as indicated above), the 

pre-specified and indexed constraints are added to the same grammar and their weights are optimized again 

on the same data. The starting weights for this second training step are the weights found by the previous 

training step; indexed constraints start out as the same weight as their non-indexed counterparts. For instance, 

if MAX receives the weight of 1.14 after the first training step, then both MAX and MAXi start out at 1.14 for 

the second training step; after the second training step, the weight of MAX lowers to 1.11, while the weight 

of MAXi raises to 1.20. 

While this learner can account for interactions between phonology and indexation, it does not allow 

access to interactions among indexed constraints. For instance, if an input is indexed to *CCCj, it might not 

also need to be indexed to MAXi to account for its lower schwa deletion rate, and vice versa, since both 

constraints can lower the same word’s deletion rate. Furthermore, this learner cannot choose which indexed 

constraints to include in the first place, and does not allow for multiple indexed versions of the same 

constraint. All these issues are addressed in the third learner we describe here: the iterative indexation learner, 

which adds indexed constraints one by one. 

 

3.2.3    Iterative indexation    The final “upgrade” to the learner we suggest is that, instead of adding all 

indexed constraints at once, only one indexed constraint is chosen, and then this modified form of the post-

training indexation learner is iterated until the grammar stops improving in terms of its fit to the training data. 

This learner aims to induce only those indexed constraints that are strictly necessary for the training data. 

 The learner starts out with non-indexed constraints only, like the post-training indexation learner does. 

After this, a criterion is used to select one indexed constraint to add to the grammar. Just like in the other two 

learners, the inputs associated with this indexed constraint are those for which the non-indexed counterpart’s 

weight’s gradient is positive. Just like in the post-training indexation learner, the grammar’s weights are 

trained on the same dataset again once the new indexed constraint has been added (and the new indexed 

constraint’s weight is initialized at the same value as the constraint it is derived from). If the new and the old 

grammar differ in KL-divergence (Kullback & Leibler 1951) between predicted probabilities and the attested 

probabilities in the training data by more than a threshold value (we used 1), another new indexed constraint 

is added, and the grammar’s weights are trained once again. When the new grammar no longer yields a 

sufficient improvement in KL-divergence (<1 in our case), the cycle stops. Figure 1 visualizes all learners 

together to show how iterative learner builds on the pre- and post-training learners. 
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Figure 1. A visualization of the three indexation learners and the control (no indexation). 

 

 The criterion by which each new indexed constraint is chosen is the mean absolute error (MAE). For 

every constraint in the grammar, the gradient values given each individual input are computed, as well as the 

mean of all these values. Within each constraint, the absolute differences between each value and the 

corresponding mean are computed. These differences are summed and divided by the total number of inputs: 

 

(6) Mean absolute error calculation 
∑|𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑛𝑝𝑢𝑡 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 − 𝑚𝑒𝑎𝑛 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡|

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡𝑠
 

  

At any point in time, for a constraint to have an indexed version to be added to the grammar, the constraint 

must not already have an indexed version in the grammar and must have both positive and negative gradient 

values among the inputs. From the set of constraints that meet these criteria, the one with the highest MAE 

is chosen (i.e., the one for which the various inputs diverge the most in terms of whether they want the 

constraint’s weight to go up of down). If there is a tie between multiple constraints that all have the same 

MAE, one of these is chosen at random. 

This learner takes interactions between indexed constraints into account, as each indexed constraint has 

the chance to receive its optimized weight before the next indexed constraint is induced. For instance, all 

inputs indexed to *CCCj in the results of the post-training indexation learner are also indexed to MAXi; the 

iterative indexation learner induces MAXi first, and since this sufficiently decreases the relevant inputs’ 

probability of schwa deletion, *CCCj is never induced.  

In addition, it allows for inducing multiple indexed constraints for the same non-indexed counterpart. At 

any iteration in the iterative indexation learner, any constraint is eligible for being indexed as long as it does 

not already have an indexed version in the grammar and as long as it has inputs with positive gradients and 

inputs with negative gradients. This means that existing indexed constraints can be re-indexed, as happens in 

our existing results: the indexed constraint *əj receives an indexed version *əj,m – which is associated with a 

proper subset of the inputs that belong to *əj. Thus, the non-indexed constraint *ə corresponds to two different 

indexed constraints, and the grammar encodes three levels of schwa-avoidance in the language: a base-level 

(only subject to *ə), a middle level (subject to *ə and *əj), and a high level (subject to *ə, *əj, and *əj,m). 

 

3.3    Generalization methods    Based on the outcomes of three different indexed constraint learners, we 

also explore two different ways of generalizing the resulting indexed constraint grammars to novel inputs. 

The most economical way, which we call the zero method, is to ignore indexed constraints entirely when 

applying the grammar to novel inputs (cf. Pater 2000). Essentially, this assumes that novel inputs cannot have 

indices and speakers do not use their implicit knowledge of the lexicon to generalize. 

 An alternative method, which we call the probabilistic method, models the speaker’s lexical knowledge 

by assigning indices to novel words probabilistically (see, e.g., Becker 2009). In Becker’s (2009) original 

proposal, a novel input is probabilistically assigned constraint indices according to the proportion of existing 

words that has each of these indices (i.e., if 60% of all words is indexed to MAXi, then there is a 60% chance 

that a novel word will also receive index i). Here, we simplify this procedure by giving novel words 

“expected” violation amounts for every indexed constraint. This is done by multiplying the number of 
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violations of the non-indexed counterpart of the relevant indexed constraint by the proportion of relevant 

inputs (=inputs whose outputs candidates are not tied in terms of violations of this constraint) in the training 

data that are indexed to it. For example, if 60% of all inputs in the training data that can have a MAX violation 

are indexed to MAXi, then for a novel input /bəla/, the candidate [bla] will have 60% × 1 = 0.6 violations, 

while the candidate [bəla] will have 60% × 0 = 0 violations. Thus, probabilities assigned to surface candidates 

derived from novel inputs reflect how Becker (2009) predicts inputs with the same violation profile to surface 

in aggregate. 

4 Simulations and performance on training data 

The three indexation learners described in §3.2 were implemented in R using Staubs’ (2011) 

implementation of batch Maximum Entropy learning. Staubs’ original learner was used for the control (no 

indexation). Each learner was run once, with a minimal L2 regularization term with μ=0 and σ2=10,000,000. 

Weights were initialized at 0, and optimization took place through the L-BFGS-B (Byrd et al. 1995) batch 

optimization method. The four resulting grammars (no, pre-training, post-training, and iterative indexation) 

are summarized in Table 2. Non-zero weighted indexed constraints are shaded dark grey, non-zero-weighted 

non-indexed constraints are shaded light grey. The third column under each learner indicates the percentage 

of relevant inputs (i.e., inputs that have a non-zero violation profile) associated with each indexed constraint. 

 

Table 2. Grammars learned by each of the learners.  

No indexation Pre-training indexation Post-training 

indexation 
Iterative indexation 

Constr Weight % Constr Weight % Constr Weight % Constr Weight % 

*CNC 1.56 100% MAXi 1.25 87% *CNC 1.80 100% *CNC 1.88 100% 

MAX 1.14 100% *CNC 0.79 100% MAXi 1.20 54% MAXi 1.83 54% 

*CCC 0.92 100% *CNCj 0.79 100% MAX 1.11 100% MAX 1.22 100% 

ə→PU 0.29 100% *ək 0.65 1% *CTN 0.78 100% *CCC 0.89 100% 

*CTN 0.26 100% MAX 0.47 100% *CCC 0.61 100% *əj 0.78 46% 

*ə 0.004 100% *CCC 0.289 100% *CCCj 0.46 60% *CTN 0.76 100% 

*#CC 0.001 100% *CCCm 0.289 97% *ək 0.30 46% *ə 0.56 100% 
 

ə→PU 0.287 100% *ə 0.30 100% *#CCk 0.48 47% 

*ə 0.22 100% ə→PU 0.23 100% *əj,m 0.32 22% 

*CTN 0.15 100% *CNCm 0.06 57% ə→PU 0.31 100% 

*CTNn 0.15 100% *#CC 0.00 100% *#CC 0.00 100% 

*#CC 0.00 100% *CTNn 0.00 40% 
 

*#CCp 0.00 73% *#CCp 0.00 44% 

ə→PUq 0.00 1% ə→PU q 0.00 53% 

 

As can be seen, the iterative indexation learner indeed only induced four indexed constraints, 

corresponding to only three non-indexed counterparts (MAX, *ə, *#CC). In addition, it is interesting to see 

that the pre-training learner leads to indexed constraints that cover either a great majority of relevant inputs 

 
1 Dell uses pairs like /avəniʁ/ (obligatory deletion) vs. /la səmɛn/ (optional deletion) to motivate the generalization that 

schwa is less likely to delete when it results in a #CC sequence. In our data, there are very few words like /avəniʁ/ (just 

four words with schwa in a VC_CV context), so differentiating between the contexts is not necessary for the grammar. 

This is most likely the reason why *#CC consistently receives 0 weight.   
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(up to 100%) or almost none (1%), while the post-training and iterative learners yield indexed constraints 

with percentages closer to 50% (note that for the grammar made by the iterative indexation learner, the 

constraint *əj,m covers roughly half of the inputs of the constraint it is based on, namely, *əj – 22% versus 

46%). 

These grammars were evaluated by computing the log-likelihood of the training data given their 

constraints and weights. Since this involves the original training data, the generalization methods are not 

relevant: the resulting tableaux files specify for each input whether it is associated with a certain indexed 

constraint. The results of this are given in Figure 2. It can be seen that each of the indexed constraint grammars 

is captures the data better than the grammar without indexed constraints, and that the log-likelihood goes up 

further as the indexation learners become more sophisticated (pre-training < post-training < iterative). Note 

that sophistication does not equal model complexity in this case, since the iterative learner’s grammar only 

has 11 constraints against 14 constraints in the pre-training and post-training learners’ grammars. 

Furthermore, if we correct for zero-weighted constraints, the pre-training learner’s grammar actually has the 

greatest number of constraints: 11, versus 10 for the post-training and iterative learners. 

 

Figure 2. Log-likelihood on training data for all four grammars (closer to 0 is better). 

5 Generalization to Smith & Pater (2020) 

To see whether the grammars learned by each of the indexation learners generalized well to new data, 

we tested the grammars resulting from all four learners on a new data set. Specifically, the constraints and 

their weights in these grammars, as trained on the Racine (2008) corpus (§2.1, §4), were used to predict the 

schwa retention rates from Smith & Pater’s (2020) experiment (see §2.2). We made generic inputs /VCəCV/, 

/VCəCVCV/, /CCəCV/, and /CCəCVCV/, corresponding to each of the conditions in the experiment, and 

gave them two candidates each: one with schwa, one without. Only some of the constraints and their weights 

in the learned grammars were used: *ə, ə→PU, Max, *CCC, *CTN, and any indexed versions of these. *CTN 

was violated whenever *CCC was, since the experimental items all has a plosive preceding schwa and an 

obstruent following it. *#CC was irrelevant due to a lack of initial clusters in these data, while *CNC was 

irrelevant because all CCC clusters has a stop as its middle consonant.  

Both generalization methods explained in §3.3 (zero method, probabilistic method) were applied to the 

outcome of each of the three indexation learners (pre-training, post-training, iterative indexation). The no 

indexation grammar has no indexed constraints, and thus the generalization methods are irrelevant to it. This 

means there are seven distinct combinations: no indexation, and then each indexation model combined with 

either generalization method. Each grammar’s weights as applied to the generic inputs yield predicted 

candidate probabilities; the predicted probabilities of the schwa-ful candidates were compared to the attested 

proportions of schwa retention in the experiment. The comparison was done through sum squared error 

(SSE): the differences between the predicted and attested proportions of schwa retention for each condition 

were squared and then summed, see (5). Lower SSE means the prediction is more accurate. Figure 3 shows 

the SSE values for each learning model × generalization method combination, with the SSE value of the 

Smith & Pater’s (2020) own batch-trained MaxEnt grammar as a reference. This latter grammar had 

essentially the same set of constraints relevant to the deletion subset of the data, but did not have *CTN, and 

had *CLASH instead of ə→PU; it also had no indexed constraints (see Smith & Pater 2020 for details). The 

dotted line in Figure 3 indicates the SSE value of the no indexation grammar from §4. 

 

(7) SSE calculation. 

𝑆𝑆𝐸 = ∑(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑎𝑡𝑡𝑒𝑠𝑡𝑒𝑑)2 
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Figure 3. SSE values for each combination. Dotted line indicates No indexation model SSE value. 

 

As can be seen in Figure 3, the learner × generalization method combinations differ in their error values, 

but there is one clear outlier: the pre-training indexation learner combined with the zero method of 

generalization scored exceptionally badly. Upon inspection of the constraints in the learned grammar (Table 

2), it can be seen that many of the indexed constraints (including most of the highly weighted ones) are 

associated with a great majority of the inputs in the training data, so that indexed constraints play a crucial 

role in deriving the correct schwa deletion rates for most inputs. This means that applying the zero method 

(i.e., ignoring the indexed constraints) will yield very different rates of schwa deletion compared to the ones 

in the training data, meaning that schwa retention/deletion rates in novel data points will also be predicted 

incorrectly.  

Interestingly, while the probabilistic method yields a better score for the pre-training learner's outcome, 

the pattern is the opposite for the post-training and iterative indexation learners: when the 0 method is applied, 

the outcome of these learners fits the test data much better compared to when the probabilistic method is 

applied. This is probably related to the fact that these learners lead to much sparser use of indexed constraints 

in fitting the training data (i.e., lower percentages of relevant inputs being associated with any given indexed 

constraint), so that leaving out indexed constraints better reflects the tendencies in the majority of the data. 

The SSE values for all combinations except pre-training indexation with the 0 method of generalization 

are quite close to that of the no indexation model (they fall close to the dotted line). In particular, the best 

values (for post-training and iterative indexation with the 0 method of generalization) are on par with the no 

indexation model: their SSE values do not fall out higher. The iterative indexation grammar with the 0 method 

of generalization is even on par with Smith & Pater’s own grammar, as both have similar SSE values.  

The main takeaway is that adding indexation does not hurt generalization. Even though indexation could 

in theory create an overfitted grammar where patterns are stored for every lexical item, in practice, learning 

algorithms for indexation result in grammars in which non-indexed constraints can be used to generalize to 

previously unseen data. 

6 Discussion/conclusion 

Adding indexed constraints to a constraint-based grammar is expected to lead to better capturing the 

intricacies of the dataset, but in this paper, we ask whether this hurts the ability of these grammars to 

generalize to novel inputs. We used two existing French schwa deletion data sets as a case study: one for 

training (§2.1), one for testing (§2.2). These datasets showcase probabilistic patterns that are both 

phonologically and lexically-conditioned, which is a good match for our proposal of MaxEnt grammar 

learners that induce indexed constraints (§3). As can be seen in §4, adding indexed constraints indeed does 

lead to better capturing the dataset, as can be seen by the increasing log-likelihood as indexed constraints are 

added (as well as the trend for even higher log-likelihood as more sophisticated indexed constraint learners 

are used). However, as shown by the generalization experiment in §5, the indexation learners do not 

significantly impact the generalization ability of the resulting grammars, as the model with the best score on 
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the training data (iterative indexation) had a generalization score on par with the model that has no indexation. 

This is finding is similar to how adding random effects improves generalization in Mixed Effects models 

(e.g., Zymet 2018; Barr et al. 2013).  

Of course, these results are based on one case study so far. While French schwa deletion is well-studied, 

there are many other cases of phonological generalization from lexically-conditioned processes (e.g., Zuraw 

2000, Temkin-Martínez 2010, Linzen et al. 2013). Such cases should be investigated in the same framework 

in the future to obtain a fuller image of the potential of the currently proposed MaxEnt learners to generalize. 

Could it be that pre-training and post-training indexation work better than iterative indexation in certain 

cases? In addition, the iterative indexation learner itself should be analyzed in more detail. How can it be 

optimized to work for various cases? How conservative is it in terms of maximizing the phonological 

grammar’s reluctance to take over phonological patterns with lexical patterns? These questions should be 

addressed in future work. 
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